Monday, September 22, 2014

To Be Complex Is Phase

From the post "Rectified Waveform To The Rescue",  when the waveform is rectified,

\(\omega_a=4\omega_d\).

\({\cfrac { d^2 T }{ d\, t^2 }}=-\omega_d T_o\)

\(\xi^2=\cfrac{1}{2}(1-\cfrac{\omega_a}{\cfrac{1}{4}T_o})\)

\(\xi\)  can be reduced to zero and beyond.

For

\(\omega_a>\cfrac{1}{4}T_o\) for a rectified waveform driving force,

\(\xi\)  is complex.  What happens when  \(\xi\)  is complex?

Consider the energy loss in a damped system,

\(F_{loss}=-2p.\cfrac{d\,x}{d\,t}\)

\(E_{loss}=\int{-F_{loss}}dx=\int{2p.\cfrac{d\,x}{d\,t}}dx=\int{2\xi\omega_o\cfrac{d\,x}{d\,t}}\cfrac{d\,x}{d\,t}dt\)

\(\cfrac{d\,E_{loss}}{d\,t}=2\xi\omega_o\left\{\cfrac{d\,x}{d\,t}\right\}^2\)

Since  \(\cfrac{d\,x}{d\,t}\) has a time component,  a complex  \(i\xi\)  would mean a  \(\pi/2\)  phase delay in  \(\cfrac{d\,E_{loss}}{d\,t}\).

\(2i\xi\omega_o\left\{\cfrac{d\,x}{d\,t}\right\}^2=2\xi\omega_o\left\{\cfrac{d\,x}{d\,t}\right\}^2e^{i\pi/2}=2\xi\omega_o\left|\cfrac{d\,x}{d\,t}\right|^2e^{i2wt}e^{i\pi/2}=2\xi\omega_o\left|\cfrac{d\,x}{d\,t}\right|^2e^{i(2wt+\pi/2)}\)