Sunday, September 14, 2014

Science Fantasy, My Very Own...

From the post "Drag and A Sense of Lightness",

\( r_{ ec }=\cfrac { q^{ 2 } }{ 4\pi \varepsilon _{ o }m_{ e }v^{ 2 } } \)

and \(v^2=2c^2\),  also

\(\cfrac{r_{ec}}{r_e}=1-\cfrac{A}{m_e}r_{e}\)

where  \(A\)  is the drag factor.  Therefore,

\({r_{ec}}=r_{e}-\cfrac{A}{m_e}r^2_{e}\)

\(\cfrac{A}{m_e}r^2_{e}-r_{e}+{r_{ec}}=0\)

\(r_{e}=\cfrac{1\pm \sqrt{(-1)^2-4\cfrac{A}{m_e}{r_{ec}}}}{2\cfrac{A}{m_e}}\)

\(r_{e}={\cfrac{m_e}{2A}}\left\{{1\pm \sqrt{1-4\cfrac{A}{m_e}{r_{ec}}}}\right\}\)

From the post "Temperature, Space Density And Gravity", it was postulated that electron and proton pair are matter and antimatter pair, when a electron collide into the nucleus, total annihilation occurs and huge amount of heat is produced.

\(r_{e}={\cfrac{m_e}{2A}}\left\{{1\pm \sqrt{1-4\cfrac{A}{m_e}{r_{ec}}}}\right\}<r_{n}\)

where  \(r_{n}\)  is the radius of the atomic nucleus.

The drag factor is directly proportional to density, if space behave the same,

\(A=A_o\cfrac{d_s}{d_n}\)

where  \(A_s\)  is the drag factor of space at space density  \(d_s\)  and  \(A_o\)  is the drag factor of normal free space,  \(d_n\)  uncompressed.  \(d_s\)  decreases with increasing  \(T\)  and so  \(A\)  decreases with increasing  \(T\).  From the post "kaBoom",

\(d_s-d_n=B.h(lnT)\)

\(\cfrac{d_s}{d_n}=E.h(lnT)+1=f(lnT)\)

where  \(E=\cfrac{B}{d_n}\)  and  \(f(lnT)\)  is a function in  \(lnT\)

then the condition for matter/antimatter annihilation is,

\(\cfrac{m_e}{2A_of(lnT)}\left\{{1\pm \sqrt{1-4\cfrac{A_of(lnT)}{m_e}{r_{ec}}}}\right\}<r_{n}\)

Does the L.H.S decreases monotonously with increasing  \(T\)?  If it does then matter/antimatter annihilation is possible by increasing the temperature of a confined heavy element whose  \(r_n\)  is large.