Monday, September 29, 2014

Not This Way...

The interaction between electron and photon is repulsive,


Consider a photon on approach to a electron, at a horizontal distance  \(d\)  away,  what is the deflection?  We break the path of the photon into 2 parts, before it is level horizontally with the electron and after it is level with the electron.

Deflection before being level with the charge,

\(r=\sqrt { d^{ 2 }+(D_{ o }-ct)^{ 2 } } \)

\( sin(\theta )=\cfrac { d }{ r } =\cfrac { d }{ \sqrt { d^{ 2 }+(D_{ o }-ct)^{ 2 } }  } \)

\( F_{ h }=Fsin(\theta )=\cfrac { q_{ p }q }{ 4\pi \varepsilon _{ o }r^{ 2 } } sin(\theta )=\cfrac { q_{ p }q }{ 4\pi \varepsilon _{ o }(d^{ 2 }+(D_{ o }-ct)^{ 2 }) } \cfrac { d }{ \sqrt { d^{ 2 }+(D_{ o }-ct)^{ 2 } }  } \)

\( x_{ d }=\int _{ 0 }^{ t=D_{ o }{ / }c }{ \cfrac { F_{ h } }{ m_{ p } }  } dt=\int _{ 0 }^{ t=D_{ o }c }{ \cfrac { q_{ p }q }{ 4\pi m_{ p }\varepsilon _{ o } } d(d^{ 2 }+(D_{ o }-ct)^{ 2 })^{ -3/2 } } dt=\cfrac { q_{ p }q }{ 4\pi m_{ p }\varepsilon _{ o } } \left\{ \cfrac { (ct-D_{ o }) }{ cd\sqrt { d^{ 2 }+(D_{ o }-ct)^{ 2 } }  }  \right\} ^{ D_{ o }/c }_{ 0 } \)

\( x_{ d1 }=\cfrac { q_{ p }q }{ 4\pi  m_{ p }\varepsilon _{ o }c } \left\{ \cfrac { D_{ o } }{ d\sqrt{d^2+D^2_o} }  \right\} \)

Deflection after being level with the electron,

\(r=\sqrt { d^{ 2 }_1+(ct)^{ 2 } } \)

where  \(d_1=x_{d1}+d\)

\( sin(\theta )=\cfrac { d_1 }{ r } =\cfrac { d_1 }{ \sqrt { d^{ 2 }_1+(ct)^{ 2 } }  } \)

\( F_{ h }=Fsin(\theta )=\cfrac { q_{ p }q }{ 4\pi \varepsilon _{ o }r^{ 2 } } sin(\theta )=\cfrac { q_{ p }q }{ 4\pi \varepsilon _{ o }(d^{ 2 }_1+(ct)^{ 2 }) } \cfrac { d_1 }{ \sqrt { d^{ 2 }_1+(ct)^{ 2 } }  } \)

\( x_{ d }=\int _{ 0 }^{ t=D/c }{ \cfrac { F_{ h } }{ m_{ p } }  } dt=\int _{ 0 }^{ t=D/c }{ \cfrac { q_{ p }q }{ 4\pi m_{ p }\varepsilon _{ o } }d_1 (d^{ 2 }_1+c^{ 2 }t^{ 2 })^{ -3/2 } } dt=\cfrac { q_{ p }q }{ 4\pi m_{ p }\varepsilon _{ o } } \left\{ \cfrac { t }{ d_1\sqrt { d^{ 2 }_1+c^{ 2 }t^{ 2 } }  }  \right\} ^{ D/c }_{ 0 }\)

\( x_{ d2}=\cfrac { q_{ p }q }{ 4\pi  m_{ p }\varepsilon _{ o }c } \left\{ \cfrac { D }{ d_1\sqrt { d^{ 2 }_1+D^{ 2 } }  }  \right\}  \)

\(d_1=x_{d1}+d\)

\( x_{ d2}=\cfrac { q_{ p }q }{ 4\pi  m_{ p }\varepsilon _{ o }c } \left\{ \cfrac { D }{ (x_{d1}+d)\sqrt { (x_{d1}+d)^{ 2 }+D^{ 2 } }  }  \right\}  \)

If we estimate the optical path as the hypotenuse of a triangle  (It is usually wrong to estimated optical path to find path difference, because the actual path difference is already small.), the optical path difference between a straight photon and a deflected photon is,

\(OP=\sqrt { (D_{ o }+D)^{ 2 }+(x_{ d1 }+x_{ d2 })^{ 2 } } -(D_{ o }+D)\)

For destructive interference,

\(\sqrt { (D_{ o }+D)^{ 2 }+(x_{ d1 }+x_{ d2 })^{ 2 } } -(D_{ o }+D)=\cfrac { (2n+1)\lambda  }{ 2 } \)

where  \(n=0, 1, 2, 3...\)

\(\cfrac{\sqrt { (D_{ o }+D)^{ 2 }+(x_{ d1 }+x_{ d2 })^{ 2 } }}{D_{ o }+D} -1=\cfrac { (2n+1)\lambda  }{ 2(D_{ o }+D) } \)

\(\cfrac{\sqrt { (D_{ o }+D)^{ 2 }+(x_{ d1 }+x_{ d2 })^{ 2 } }}{D_{ o }+D} =\cfrac {(2n+1)\lambda  }{ 2(D_{ o }+D) } +1\)

\(\cfrac{1}{cos(\theta)}=\cfrac { (2n+1)\lambda  }{ 2(D_{ o }+D) } +1\)

\(cos(\theta )=\cfrac { 2(D_{ o }+D) }{ (2n+1)\lambda +2(D_{ o }+D) } \)

Since,

\(\cfrac { 2(D_{ o }+D) }{ (2n+1)\lambda +2(D_{ o }+D) }<1\)

we know that  \(\theta\)  has solutions.

when  \(n\) is small,

\(\cfrac { 2(D_{ o }+D) }{ (2n+1)\lambda +2(D_{ o }+D) }\approx 1\),    \(\theta=0\)


For constructive interference,

\(\sqrt { (D_{ o }+D)^{ 2 }+(x_{ d1 }+x_{ d2 })^{ 2 } } -(D_{ o }+D)=n\lambda  \)

\(n=0, 1, 2, 3,...\)

\(\cfrac{1}{cos(\theta)}=\cfrac{n\lambda}{D_{ o }+D}+1  \)

\(cos(\theta)=\cfrac{D_{ o }+D}{n\lambda+D_{ o }+D}\)

when \(n\)  is small,

\(\cfrac{D_{ o }+D}{n\lambda+D_{ o }+D}\approx 1\)   \(\theta=0\)

Both constructive and destructive interference mix and there is no pattern!  There is no observable interference pattern due to the interaction between the straight photons and deflected photons.