Wednesday, September 17, 2014

Temperature Of An Atom, Shocking!

From the previous post "Hot Topic, Less Mumble, Jumble...",

\(T=\cfrac{1}{2}(qv^2_{rc}+mv^2_{rg})\)

then for an electron, its temperature is given by,

\(T_e=\cfrac{1}{2}(qv^2_{rc}+m_ev^2_{rg\,e})\)

and for a proton,

\(T_p=\cfrac{1}{2}(qv^2_{rc}+m_pv^2_{rg\,p})\)

and for a neutron,

\(T_n=\cfrac{1}{2}m_nv^2_{rg\,n}\)

Temperature associated with an atom is,

\(T_{atom}=n(T_e+T_p)+(N-n)T_n\)

where  \(N\)  is the mass number and  \(n\)  the atomic number,

\(T_{atom}=nT_e+nT_p+(N-n)T_n\)

Let,

\(T_{nucleus}=nT_p+(N-n)T_n\)

\(T_{atom}=nT_e+T_{nucleus}\)

And since,

\(T_e<nT_e<nT_p<nT_p+(N-n)T_n\)

\(T_e<T_{nucleus}\)

For the sake of completeness.