Loading [MathJax]/jax/output/CommonHTML/jax.js

Friday, September 26, 2014

Shape Of Things To Come

Let's take a look at the cascade of collisions again,


We can identify a series of forward velocities after  n  number of collisions,

v{2Nn(ρ)+1}n,  

v{Nn(ρ)1Nn(ρ)+1}2{2Nn(ρ)+1}n,  

v{Nn(ρ)1Nn(ρ)+1}4{2Nn(ρ)+1}n...

The total momentum of this forward particles is,

Pps=msv{2Nn(ρ)+1}nlimm{1+{Nn(ρ)1Nn(ρ)+1}2+{Nn(ρ)1Nn(ρ)+1}4+...{Nn(ρ)1Nn(ρ)+1}2m+...}

=msv{2Nn(ρ)+1}nlimmm0{Nn(ρ)1Nn(ρ)+1}2m

Pps=msv{2Nn(ρ)+1}n11{Nn(ρ)1Nn(ρ)+1}2

=msv{2Nn(ρ)+1}n(Nn(ρ)+1)2(Nn(ρ)+1)2(Nn(ρ)1)2

=msv2n(Nn(ρ)+1)n21(Nn(ρ)+1)2(Nn(ρ)1)2

=msv1Nn(ρ){2(Nn(ρ)+1)}n2

If  Nn(ρ)>1  the forward momentum dies down eventually as  n,  after many collisions.

And a series of backward velocities,

v{Nn(ρ)1Nn(ρ)+1}{2Nn(ρ)+1}n,  

v{Nn(ρ)1Nn(ρ)+1}3{2Nn(ρ)+1}n,  

v{Nn(ρ)1Nn(ρ)+1}5{2Nn(ρ)+1}n...

The total momentum of this backward particles is,

Ppsr=msv{2Nn(ρ)+1}n{Nn(ρ)1Nn(ρ)+1}limm{1+{Nn(ρ)1Nn(ρ)+1}2+...{Nn(ρ)1Nn(ρ)+1}2m+...}

=msv{2Nn(ρ)+1}n{Nn(ρ)1Nn(ρ)+1}limmm0{Nn(ρ)1Nn(ρ)+1}2m

=msv{2Nn(ρ)+1}nNn(ρ)1Nn(ρ)+1(Nn(ρ)+1)2(Nn(ρ)+1)2(Nn(ρ)1)2

=msv{2Nn(ρ)+1}n1Nn(ρ)12Nn(ρ)

=msv{2Nn(ρ)+1}n1.12{11Nn(ρ)}

If  Nn(ρ)>1 then the backward momentum also attenuate to zero.  When  Nn(ρ)=1  there is no backward momentum, the particle has zero velocity.

From the post "Collisions And More Collisions" the last graph shows that when  Nn(ρ)=2 velocity the attenuate very quickly within 10 collisions.  This would suggest that under normal circumstances  Nn(ρ)=1.  That the forward momentum is carried from particle to particle without loss.