We can identify a series of forward velocities after n number of collisions,
v{2Nn(ρ)+1}n,
v{Nn(ρ)−1Nn(ρ)+1}2{2Nn(ρ)+1}n,
v{Nn(ρ)−1Nn(ρ)+1}4{2Nn(ρ)+1}n...
The total momentum of this forward particles is,
Pps=msv{2Nn(ρ)+1}nlimm→∞{1+{Nn(ρ)−1Nn(ρ)+1}2+{Nn(ρ)−1Nn(ρ)+1}4+...{Nn(ρ)−1Nn(ρ)+1}2m+...}
=msv{2Nn(ρ)+1}nlimm→∞∑m0{Nn(ρ)−1Nn(ρ)+1}2m
Pps=msv{2Nn(ρ)+1}n11−{Nn(ρ)−1Nn(ρ)+1}2
=msv{2Nn(ρ)+1}n(Nn(ρ)+1)2(Nn(ρ)+1)2−(Nn(ρ)−1)2
=msv2n(Nn(ρ)+1)n−21(Nn(ρ)+1)2−(Nn(ρ)−1)2
=msv1Nn(ρ){2(Nn(ρ)+1)}n−2
If Nn(ρ)>1 the forward momentum dies down eventually as n→∞, after many collisions.
And a series of backward velocities,
v{Nn(ρ)−1Nn(ρ)+1}{2Nn(ρ)+1}n,
v{Nn(ρ)−1Nn(ρ)+1}3{2Nn(ρ)+1}n,
v{Nn(ρ)−1Nn(ρ)+1}5{2Nn(ρ)+1}n...
The total momentum of this backward particles is,
Ppsr=msv{2Nn(ρ)+1}n{Nn(ρ)−1Nn(ρ)+1}limm→∞{1+{Nn(ρ)−1Nn(ρ)+1}2+...{Nn(ρ)−1Nn(ρ)+1}2m+...}
=msv{2Nn(ρ)+1}n{Nn(ρ)−1Nn(ρ)+1}limm→∞∑m0{Nn(ρ)−1Nn(ρ)+1}2m
=msv{2Nn(ρ)+1}nNn(ρ)−1Nn(ρ)+1(Nn(ρ)+1)2(Nn(ρ)+1)2−(Nn(ρ)−1)2
=msv{2Nn(ρ)+1}n−1Nn(ρ)−12Nn(ρ)
=msv{2Nn(ρ)+1}n−1.12{1−1Nn(ρ)}
If Nn(ρ)>1 then the backward momentum also attenuate to zero. When Nn(ρ)=1 there is no backward momentum, the particle has zero velocity.
From the post "Collisions And More Collisions" the last graph shows that when Nn(ρ)=2 velocity the attenuate very quickly within 10 collisions. This would suggest that under normal circumstances Nn(ρ)=1. That the forward momentum is carried from particle to particle without loss.