Friday, September 26, 2014

Shape Of Things To Come

Let's take a look at the cascade of collisions again,


We can identify a series of forward velocities after  \(n\)  number of collisions,

\(v\left\{\cfrac { 2 }{ N_{ n }(\rho )+1 }\right\}^n \),  

\(v\left\{\cfrac {N_{ n }(\rho )-1 }{ N_{ n }(\rho )+1 }\right\}^2\left\{\cfrac { 2 }{ N_{ n }(\rho )+1 }\right\}^n \),  

\(v\left\{\cfrac {N_{ n }(\rho )-1 }{ N_{ n }(\rho )+1 }\right\}^4\left\{\cfrac { 2 }{ N_{ n }(\rho )+1 }\right\}^n\)...

The total momentum of this forward particles is,

\(P_{ps}=m_sv\left\{\cfrac { 2 }{ N_{ n }(\rho )+1 }\right\}^n lim_{m\rightarrow\infty}\left\{ 1+\left\{\cfrac {N_{ n }(\rho )-1 }{ N_{ n }(\rho )+1 }\right\}^2+\left\{\cfrac {N_{ n }(\rho )-1 }{ N_{ n }(\rho )+1 }\right\}^4+...\left\{\cfrac {N_{ n }(\rho )-1 }{ N_{ n }(\rho )+1 }\right\}^{2m}+... \right\}\)

\(=m_sv \left\{\cfrac { 2}{ N_{ n }(\rho )+1 }\right\}^n lim_{m\rightarrow\infty} \sum^m_0{\left\{\cfrac {N_{ n }(\rho )-1 }{ N_{ n }(\rho )+1 }\right\}^{2m}}\)

\(P_{ps}=m_sv \left\{\cfrac { 2}{ N_{ n }(\rho )+1 }\right\}^n\cfrac{1}{1-\left\{\cfrac {N_{ n }(\rho )-1 }{ N_{ n }(\rho )+1 }\right\}^2}\)

\(=m_{ s }v\left\{ \cfrac { 2 }{ N_{ n }(\rho )+1 }  \right\} ^{ n }\cfrac { (N_{ n }(\rho )+1)^{ 2 } }{ (N_{ n }(\rho )+1)^{ 2 }-(N_{ n }(\rho )-1)^{ 2 } } \)

\( =m_{ s }v\cfrac { 2^{ n } }{ (N_{ n }(\rho )+1)^{ n-2 } } \cfrac { 1 }{ (N_{ n }(\rho )+1)^{ 2 }-(N_{ n }(\rho )-1)^{ 2 } } \)

\( =m_{ s }v\cfrac { 1 }{ N_{ n }(\rho ) } \left\{ \cfrac { 2 }{ (N_{ n }(\rho )+1) }  \right\} ^{ n-2 }\)

If  \( N_{ n }(\rho )>1\)  the forward momentum dies down eventually as  \(n\rightarrow\infty\),  after many collisions.

And a series of backward velocities,

\(v\left\{\cfrac {N_{ n }(\rho )-1 }{ N_{ n }(\rho )+1 }\right\}\left\{\cfrac { 2 }{ N_{ n }(\rho )+1 }\right\}^n \),  

\(v\left\{\cfrac {N_{ n }(\rho )-1 }{ N_{ n }(\rho )+1 }\right\}^3\left\{\cfrac { 2 }{ N_{ n }(\rho )+1 }\right\}^n \),  

\(v\left\{\cfrac {N_{ n }(\rho )-1 }{ N_{ n }(\rho )+1 }\right\}^5\left\{\cfrac { 2 }{ N_{ n }(\rho )+1 }\right\}^n\)...

The total momentum of this backward particles is,

\(P_{ps\,r}=m_sv\left\{\cfrac { 2 }{ N_{ n }(\rho )+1 }\right\}^n\left\{\cfrac {N_{ n }(\rho )-1 }{ N_{ n }(\rho )+1 }\right\} lim_{m\rightarrow\infty}\left\{ 1+\left\{\cfrac {N_{ n }(\rho )-1 }{ N_{ n }(\rho )+1 }\right\}^2+...\left\{\cfrac {N_{ n }(\rho )-1 }{ N_{ n }(\rho )+1 }\right\}^{2m}+... \right\}\)

\(=m_sv\left\{\cfrac { 2 }{ N_{ n }(\rho )+1 }\right\}^n\left\{\cfrac {N_{ n }(\rho )-1 }{ N_{ n }(\rho )+1 }\right\}  lim_{m\rightarrow\infty} \sum^m_0{\left\{\cfrac {N_{ n }(\rho )-1 }{ N_{ n }(\rho )+1 }\right\}^{2m}}\)

\(=m_{ s }v\left\{ \cfrac { 2 }{ N_{ n }(\rho )+1 }  \right\} ^{ n }\cfrac { N_{ n }(\rho )-1 }{ N_{ n }(\rho )+1 } \cfrac { (N_{ n }(\rho )+1)^{ 2 } }{ (N_{ n }(\rho )+1)^{ 2 }-(N_{ n }(\rho )-1)^{ 2 } } \)

\(=m_{ s }v\left\{ \cfrac { 2 }{ N_{ n }(\rho )+1 }  \right\} ^{ n-1 }\cfrac { N_{ n }(\rho )-1 }{ 2N_{ n }(\rho ) } \)

\(=m_{ s }v\left\{ \cfrac { 2 }{ N_{ n }(\rho )+1 }  \right\} ^{ n-1 }.\cfrac { 1 }{ 2 }\left\{ 1 -\cfrac { 1 }{ N_{ n }(\rho ) }  \right\} \)

If  \( N_{ n }(\rho )>1\) then the backward momentum also attenuate to zero.  When  \(N_{ n }(\rho )=1\)  there is no backward momentum, the particle has zero velocity.

From the post "Collisions And More Collisions" the last graph shows that when  \( N_{ n }(\rho )=2\) velocity the attenuate very quickly within 10 collisions.  This would suggest that under normal circumstances  \( N_{ n }(\rho )=1\).  That the forward momentum is carried from particle to particle without loss.