Friday, September 5, 2014

Oops! Smooth Operator

From the post "Stress When The Heat Is On,  Thermal Stress",

\(\cfrac{\partial ({d}_{s})}{\partial x}=\cfrac{\partial (d_s)}{\partial T}.\cfrac{d T(x)}{d x}+\cfrac{\partial }{\partial T}\left\{\cfrac{\partial (d_s)}{\partial x}\right\}.T\)

\(\left\{1-T.\cfrac{\partial }{\partial T}\right\}\cfrac{\partial (d_s)}{\partial x}=\cfrac{\partial (d_s)}{\partial T}.\cfrac{d T(x)}{d x}\)

\(\cfrac{\partial (d_s)}{\partial x}=\left\{1-T.\cfrac{\partial }{\partial T}\right\}^{-1}\left\{\cfrac{\partial (d_s)}{\partial T}.\cfrac{d T(x)}{d x}\right\}\)

where

\(\left\{1-T.\cfrac{\partial }{\partial T}\right\}^{-1}\)    is the inverse of the operator    \(\left\{1-T.\cfrac{\partial }{\partial T}\right\}\)

This turns out to be very difficult.

But consider this,

\(\cfrac { \partial  }{ \partial  ln(T)  } \equiv\cfrac { \partial T }{ \partial  ln(T)  } \cfrac { \partial  }{ \partial T } \equiv T\cfrac { \partial  }{ \partial T } \)


So,

\(\left\{1-\cfrac{\partial }{\partial   ln(T)  }\right\}\cfrac{\partial (d_s)}{\partial x}=\cfrac{\partial (d_s)}{\partial T}.\cfrac{d T(x)}{d x}\)

\(\left\{1-\cfrac{\partial }{\partial ln(T) }\right\}\cfrac{\partial (d_s)}{\partial x}=\cfrac{\partial (d_s)}{\partial x}\cfrac{\partial x }{\partial T}.\cfrac{d T(x)}{d T}\cfrac{d T}{d x}\)

that is to say,

\(\left\{1-\cfrac{\partial }{\partial   ln(T) }\right\}\cfrac{\partial (d_s)}{\partial x}=\cfrac{\partial (d_s)}{\partial x}.\cfrac{d T(x)}{d T}\)

\(\left\{1-\cfrac{\partial }{\partial   ln(T)  }\right\}\cfrac{\partial (d_s)}{\partial x}=\cfrac{\partial (d_s)}{\partial x}\)

which suggests  (just mathematical trickery),

\(\cfrac{\partial }{\partial  ln(T) }\left\{\cfrac{\partial (d_s)}{\partial x}\right\}=0\)

that    \(\cfrac{\partial (d_s)}{\partial x}\)    is independent of    \({  ln(T) } \)    or

\(\cfrac{\partial }{\partial x}\left\{\cfrac{\partial (d_s)}{\partial {  ln(T)  } }\right\}=0\)

that      \(\cfrac{\partial (d_s)}{\partial   ln(T)  } \)    is independent of    \(x \)

One way this could happen is that    \(d_s\)    is a linear combination of  functions in   \(x\)    and    \({  ln(T)  } \).  This is to say,

\(d_s=A.f(x)+B.h({  ln(T)  }) \)

where    \(A\)    and     \(B\)    are constants and    \(f(x)\)    is a function only of    \(x\)    and    \(h({ln(T)})\)    is a function only of  \({ ln(T) }\).

That space density    \(d_s\)    is the superposition of space distribution itself, expressed as    \(A.f(x)\),    and the effect of thermal energy in the form of    \(B.h({ ln(T) })\).

In the case of uniformly distributed space,

\(f(x)=C\)   where    \(C\)    is a constant

\(d_s=d_n+B.h({ ln(T) })\)

where    \(A.C=d_n\)    is the normal space density and,

\(h({ ln(T) })|_{lim\,T\rightarrow0}=0\)

such that when    \(T=0\),    \(d_s=d_n\)

The points here are the    \( ln(T) \)    dependence of    \(d_s\)    and superposition    \(d_s=A.f(x)+B.h({  ln(T)  }) \).