Loading [MathJax]/jax/output/CommonHTML/fonts/TeX/fontdata.js

Friday, September 5, 2014

Oops! Smooth Operator

From the post "Stress When The Heat Is On,  Thermal Stress",

(ds)x=(ds)T.dT(x)dx+T{(ds)x}.T

{1T.T}(ds)x=(ds)T.dT(x)dx

(ds)x={1T.T}1{(ds)T.dT(x)dx}

where

{1T.T}1    is the inverse of the operator    {1T.T}

This turns out to be very difficult.

But consider this,

ln(T)Tln(T)TTT


So,

{1ln(T)}(ds)x=(ds)T.dT(x)dx

{1ln(T)}(ds)x=(ds)xxT.dT(x)dTdTdx

that is to say,

{1ln(T)}(ds)x=(ds)x.dT(x)dT

{1ln(T)}(ds)x=(ds)x

which suggests  (just mathematical trickery),

ln(T){(ds)x}=0

that    (ds)x    is independent of    ln(T)    or

x{(ds)ln(T)}=0

that      (ds)ln(T)    is independent of    x

One way this could happen is that    ds    is a linear combination of  functions in   x    and    ln(T).  This is to say,

ds=A.f(x)+B.h(ln(T))

where    A    and     B    are constants and    f(x)    is a function only of    x    and    h(ln(T))    is a function only of  ln(T).

That space density    ds    is the superposition of space distribution itself, expressed as    A.f(x),    and the effect of thermal energy in the form of    B.h(ln(T)).

In the case of uniformly distributed space,

f(x)=C   where    C    is a constant

ds=dn+B.h(ln(T))

where    A.C=dn    is the normal space density and,

h(ln(T))|limT0=0

such that when    T=0,    ds=dn

The points here are the    ln(T)    dependence of    ds    and superposition    ds=A.f(x)+B.h(ln(T)).