Loading [MathJax]/jax/output/CommonHTML/jax.js

Wednesday, September 10, 2014

KaBoom

If from the post "Oops! Smooth Operator",

ds(x)dn=B.h(ln(T))

when    T=To,    ds=ds(L),  this is to say at a distance    x=L   from the maximum,  Tmax,    at the furthest extend of the body,    T=To.  In the case of a shell, the opposite wall of the body,  in the case of a rod, the length of the rod.

So we consider,

B=ds(L)dnh(ln(To))

and also,

B=ds(0)dnh(ln(Tmax))

this implies,

ds(L)dnds(0)dnh(ln(Tmax))h(ln(To))=1

h(ln(To))h(ln(Tmax))=ds(L)dnds(0)dn

and also,

(ds)T=ds(L)dnln(To).h(ln(T))1T

From the post "Young And On Heat"

FT=3ρD.(ds)T.1α

For the case of a sphere of radius    L,

FT=3ρ.43π.L3D.(ds)T.1Lα

FT=433πρL2D.(ds)T.1α

FT=433πρL2D.ds(L)dnln(To).h(ln(T)).1T.1α


With the help of superposition,

at    x=Li,    T=Tmax,

FTmax=433πρL2iD.ds(L)dnln(To).h(ln(Tmax)).1Tmax.1α

At    x=Le,    T=To,

FTo=433πρL2eD.ds(L)dnln(To).h(ln(To)).1To.1α

FTmaxFTo=L2iL2eh(ln(Tmax))h(ln(To))ToTmax

From which we formulate,

FTmaxFTo=FTmax{1L2eL2ih(ln(To))h(ln(Tmax))TmaxTo}

Since,    h(ln(T))    is monotonously decreasing and gradient at     Tmax    is greater than at   To,  because  when    T0,    gT=0=D.dsT.dTdx

0<h(ln(To))h(ln(Tmax))TmaxTo<1

But    L2i<L2e,    if

L2eL2ih(ln(To))h(ln(Tmax))TmaxTo<1

then

FTmax>FTo

and

0<FTmaxFTo=FTmax{1L2eL2ih(ln(To))h(ln(Tmax))TmaxTo}<FTmax

This is the stress experienced by the shell of thickness    LeLi.    To achieve containment, the shell must have a yield point higher than     FTmax.    The shell should disintegrate  when    Tmax  is at the melting point of the shell.   At that moment, the shell melts instantaneously and all energy is released in a spherical wave front.   If the shell were to yield, since  the stress inside the shell is greater, the interior surface will begin to crack first.

If however,

L2eL2ih(ln(To))h(ln(Tmax))TmaxTo>1

FTmax<FTo

In this case if the shell were to yield it will crack on the exterior surface first.    To achieve containment, the shell must have a yield point higher than     FTo.  So it seems that the containment shell cannot be too thick.

When

L2eL2ih(ln(To))h(ln(Tmax))TmaxTo=1

then

FTmax=FTo

Stress on the internal and external surface of the shell are then equal.  It is likely that the shell will deform   (Li   and   Le   changes) until   FTmax=FTo  given an initial geometry subjected to   Tmax inside, unless the yield point of the material is reached first, and the containment shell breaks.

Note that the expansion along the thickness of the shell is not uniform as temperature decreases from    Tmax    to    To.

Together with the post "Have A Heart, While It's Hot", have a big kaBoom.

Note:  It is possible to make this discussion without the assumption of   h(ln(T))  by simply using the term  (ds)T|T  to denote the value of  (ds)T  at the temperature  T.  And we would have,

FTmaxFTo=FTmax{1L2eL2i.(ds)T|To(ds)T|Tmax}.