Friday, September 19, 2014

Pag.Pag...Pag....Pag Dnab Ygrene

From the post "Energy Band Gap....Gap...Gap.Gap",

\(\cfrac{d\,PE_{re}}{d\,t}=\cfrac{1}{3}m_e\dot r_{ e }^3\cfrac{ d\, r_e } { d\, T }\cfrac { d^2 T }{ d\, r^2_e }\)

It is possible to rearrange the terms to give,

\(\cfrac{d\,PE_{re}}{d\,t}=\cfrac{1}{2}m_e\dot r_{ e }^2\cfrac{ d\, r_e } { d\, T }\cfrac { d^2 T }{ d\, r^2_e }\cfrac{2}{3}\dot r_{ e }\)

\(\cfrac{d\,PE_{re}}{d\,t}=KE_{re}\cfrac{ d\, r_e } { d\, T }\cfrac { d^2 T }{ d\, r^2_e }\cfrac{2}{3}\dot r_{ e }\)

\(\cfrac{d\,PE_{re}}{d\,t}=\cfrac{2}{3}KE_{re}\cfrac{ d\, r_e } { d\, T }\cfrac { d^2 T }{ d\, r^2_e }\cfrac{d\, r_e}{d\,t}\)

We will formulate the change of total energy,

\(U=T+V=KE+(-PE)\)

\(\cfrac{d\,U}{d\,t}=\cfrac{d\,KE_{re}}{d\,t}-\cfrac{d\,PE_{re}}{d\,t}\)

So the total change in energy is,

\(\Delta U=\int{1.}d\,KE_{re}-\cfrac{2}{3}\int{KE_{re}\cfrac{ d\, r_e } { d\, T }\cfrac { d^2 T }{ d\, r^2_e }d\,r_e}\)

\(\Delta U= KE_{re}-\cfrac{2}{3}\int{KE_{re}\cfrac{ d\, r_e } { d\, T }\cfrac { d^2 T }{ d\, r^2_e }d\,r_e}\)

\(\Delta U= KE_{re}-\cfrac{2}{3}\int{KE_{re}\cfrac{ d\, r_e } { d\, T }\cfrac{d(\cfrac { d T }{ d\, r_e })}{d\,r_e}d\,r_e}\)

\(\Delta U= KE_{re}-\cfrac{2}{3}\int{KE_{re}\cfrac{ d\, r_e } { d\, T }d(\cfrac { d T }{ d\, r_e })}\)

\(KE_{re}\) is an expression in \(\dot r_e\)  which  in  the use of the Lagrangian is treated as an independent variable.

\(\Delta U= KE_{re}\left\{1-\cfrac{2}{3}ln(\cfrac { d T }{ d\, r_e })\right \}+C\)

If we focus on the kink point  \(r_{e1}\)  to  \(r_{e1}+\varepsilon\)  where  \(\varepsilon\)  is very small, and
let  \(r_{e2}=r_{e1}+\varepsilon\).  \(r_{e1}\)  is just before the kink and  \(r_{e2}\)  is just after the kink in the  \(r_e\)  vs  \(T\)  profile.

\(\Delta U= \left\{KE_{re}\left\{1+\cfrac{2}{3}ln(\cfrac { d\, r_e }{ d T })\right \}\right\}^{b}_{a}\)

where  \(a=\cfrac { d\, r_e }{ d T }|_{re2}\)  and   \(b=\cfrac { d\, r_e }{ d T }|_{re1}\)

Note that the direction of integration is from higher orbit to lower orbit.

\(\Delta U= \left\{KE_{re}+\cfrac{2}{3}KE_{re}ln(\cfrac { d\, r_e }{ d T })\right\}^{b}_{a}\)

\(\Delta U= KE_{re}|_{r{e1}}-KE_{re}|_{r{e2}}+\cfrac{2}{3}KE_{re}|_{r{e1}}ln(\cfrac{ d\, r_e } { d T }|_{r{e1}})-\cfrac{2}{3}KE_{re}|_{r{e2}}ln(\cfrac { d\, r_e } { d T }|_{r{e2}})\)

 Since,  \(r_e\)  did not change,  \(PE_{re}\)  does not change.  \(PE\) after all is defined as energy stored by virtue of position. All the energy of the band gap is then due to a change in  \(KE_{re}\) alone.

\(\Delta U=\Delta KE_{re}=KE_{re}|_{re1}-KE_{re}|_{re2}\)

So,

\(-\cfrac{2}{3}KE_{re}|_{r{e2}}ln(\cfrac { d\, r_e }{ d T }|_{r{e2}})+\cfrac{2}{3}KE_{re}|_{r{e1}}ln(\cfrac { d\, r_e }{ d T }|_{r{e1}})=0\)

and

\(KE_{re}|_{r{e2}}=KE_{re}|_{r{e1}}{ln(\cfrac{ d\, r_e }{ d T }|_{r{e1}})\over ln(\cfrac { d\, r_e }{ d T }|_{r{e2}})}\)

Moving from lower to higher orbit,

\(\Delta U=KE_{re}|_{re2}-KE_{re}|_{re1}=KE_{re}|_{r{e1}}\left\{{ln(\cfrac { d\, r_e }{ d T }|_{r{e1}})\over ln(\cfrac { d\, r_e }{ d T }|_{r{e2}})}-1\right\}\)

\(E_{BG}=\Delta U=KE_{re}|_{r{e1}}\left\{{ln(\cfrac{ d\, r_e } { d T }|_{r{e1}})\over ln(\cfrac { d\, r_e }{ d T }|_{r{e2}})}-1\right\}\)

This is a much more involved quantification of Energy Band Gap.  We know that,

\(\cfrac{ d\, r_e } { d T }<0\)

But,  \(\int{\cfrac{1}{-x}}d(-x)=ln(-x)+c\)

So,   \(\int{\cfrac{1}{x}}d(x)=ln(|x|)+c\)

and so, knowing that we have negative gradients,

\(E_{BG}=KE_{re}|_{r{e1}}\left\{{ln(|(\cfrac{ d\, r_e } { d T }|_{r{e1}})|)/ ln(|(\cfrac { d\, r_e }{ d T }|_{r{e2}})|)}-1\right\}\)

we use their absolute values only.  And since,

\(|(\cfrac{ d\, r_e } { d T }|_{r{e1}})|\) is large

\(E_{BG}<0\),    when

\(|(\cfrac { d\, r_e }{ d T }|_{r{e2}})|<1\)

This is the condition for quantum emission on transit to a higher orbit.  Very strange indeed.  For most material  \(r_e\)  is small, the change of  \(r_e\)  with  \(T\)  is even smaller.  So this is a common phenomenon, the top part of the  \(r_e\) vs  \(T\) graph has a very gentle slope less then  \(1\).

Losing energy going from a lower orbit to a higher one, is as if the electron is repulsed by the nucleus.