ψ(x)=−ln(cosh(x−12xa))+Ax+ψmax
ψmax=ln(cosh(12xa))
From,
F=ψn−ψ(x)=mdvdt=md2xdt2
d2xdt2+1m{−ln(cosh(x−12xa))+Ax+ψmax}=1mψn
d2xdt2=1m{ψn−ψmax+ln(cosh(x−12xa))−Ax}
ψc=ψn−ψmax
d2xdt2=1m{ψc+ln(cosh(x−12xa))−Ax}
d2xdt2=12mψct2+1m∬{ln(cosh(x−12xa))−Ax}dtdt
Let,
u=ln(cosh(x−12xa))−Ax
d2xdt2=12mψct2+1m∬u1d2xdt2d2xdt2dtdt
d2xdt2=12mψct2+∬uψc+ud(dx)
dudx=tanh(x−12xa)−A
dxdu=1tanh(x−12xa)−A
d(dx)=1tanh(x−12xa)−Adudu
d2xdt2=12mψct2+∬uψc+u1tanh(x−12xa)−Adudu
d2xdt2=12mψct2+∬uψc+u1tanh(x−12xa)−Adudtdudt
dxdt=1mψct+∫uψc+u1tanh(x−12xa)−Adudtdu
d(dx)dudt=1mψcdtdu+uψc+u1tanh(x−12xa)−Adudt
d(dx)dudtdudt=1mψcdtdududt+uψc+u1tanh(x−12xa)−A(dudt)2
d2xdt2=1mψc+uψc+u1tanh(x−12xa)−A(dudxdxdt)2
Finally,
d2xdt2=1mψc+uψc+u(tanh(x−12xa)−A)(dxdt)2
where,
u=ln(cosh(x−12xa))−Ax
ψc=ψn−ψmax
Compare the above with,
d2xdt2=1mψc−uψc+u1eu(e2u−1)1/2(dxdt)2
Consider,
1eu(e2u−1)1/2=1cosh(x−12xa)sinh(x−12xa)=2csch(2x−xa)
So,
d2xdt2=1mψc−uψc+u2csch(2x−xa)(dxdt)2
where u=ln(cosh(x−12xa))
for the case where the second integration constant was not considered, (ie A=0). Both the terms, in the respective expressions,

2csch(2x−xa)
tanh(x−12xa)−A
are positive around xa.
The conclusions drawn previously for A=0 are applicable for 0≤A<1.
What would cause A≠0? The presence of another particle at a distance x>2xz or x>xa where xa is the second ψ=0 when A=0.
In the presence of another particle further away, ψ from the first stretches and envelopes the second particle. The second particle would behave in a reciprocal way, but in our analysis it was considered a point particle.
Interaction of the particles' ψ is manifested in the constant A.