Loading [MathJax]/jax/output/CommonHTML/jax.js

Friday, July 17, 2015

Reach, Touch, A...

If we allow for the second constant of integration in F, then

ψ(x)=ln(cosh(x12xa))+Ax+ψmax

ψmax=ln(cosh(12xa))

From,

F=ψnψ(x)=mdvdt=md2xdt2

d2xdt2+1m{ln(cosh(x12xa))+Ax+ψmax}=1mψn

d2xdt2=1m{ψnψmax+ln(cosh(x12xa))Ax}

ψc=ψnψmax

d2xdt2=1m{ψc+ln(cosh(x12xa))Ax}

d2xdt2=12mψct2+1m{ln(cosh(x12xa))Ax}dtdt

Let,

u=ln(cosh(x12xa))Ax

d2xdt2=12mψct2+1mu1d2xdt2d2xdt2dtdt

d2xdt2=12mψct2+uψc+ud(dx)

dudx=tanh(x12xa)A

dxdu=1tanh(x12xa)A

d(dx)=1tanh(x12xa)Adudu

d2xdt2=12mψct2+uψc+u1tanh(x12xa)Adudu

d2xdt2=12mψct2+uψc+u1tanh(x12xa)Adudtdudt

dxdt=1mψct+uψc+u1tanh(x12xa)Adudtdu

d(dx)dudt=1mψcdtdu+uψc+u1tanh(x12xa)Adudt

d(dx)dudtdudt=1mψcdtdududt+uψc+u1tanh(x12xa)A(dudt)2

d2xdt2=1mψc+uψc+u1tanh(x12xa)A(dudxdxdt)2

Finally,

d2xdt2=1mψc+uψc+u(tanh(x12xa)A)(dxdt)2

where,

u=ln(cosh(x12xa))Ax

ψc=ψnψmax

Compare the above with,

d2xdt2=1mψcuψc+u1eu(e2u1)1/2(dxdt)2

Consider,

1eu(e2u1)1/2=1cosh(x12xa)sinh(x12xa)=2csch(2xxa)

So,

d2xdt2=1mψcuψc+u2csch(2xxa)(dxdt)2

where u=ln(cosh(x12xa))

for the case where the second integration constant was not considered, (ie A=0).  Both the terms, in the respective expressions,

2csch(2xxa)

tanh(x12xa)A

are positive around xa.

The conclusions drawn previously for A=0 are applicable for 0A<1.

What would cause A0?  The presence of another particle at a distance x>2xz or x>xa where xa is the second ψ=0 when A=0.

In the presence of another particle further away, ψ from the first stretches and envelopes the second particle.  The second particle would behave in a reciprocal way, but in our analysis it was considered a point particle.

Interaction of the particles' ψ is manifested in the constant A.