Tuesday, July 14, 2015

Nice To Know Instantaneously

From the previous post "No Solution But Exit Velocity Anyway",

\(\cfrac { d^{ 2 }x }{ dt^{ 2 } } =\cfrac { 1 }{ m }  \psi _{ c }  -{ \cfrac { u }{ \psi _{ c }+u }  }\cfrac { 1 }{ e^{ u }\left( { e^{ 2u }-1 } \right) ^{ 1/2 } } (\cfrac { dx }{ dt } )^{ 2 }\)

Obviously,

\(\cfrac { d^{ 2 }x }{ dt^{ 2 } } =\cfrac { 1 }{ m }  \psi _{ c }  \)

when

\(\cfrac { dx }{ dt }=v=0\)

irrespective of the value for \(x\).

This is the maximum acceleration of the oscillating particle when \(v=0\).