d2xdt2+1mψ(x)=1mψn
In general,
ψ(x)=−ln(cosh(x−12xa)+C
When x=xa, ψ(xa)=0,
C=ln(cosh(12xa))
Since we consider the case when x=0, ψ(x=0)=0, it so happens that at x=xa2,
C=ψmax=ln(cosh(12xa))
So,
ψ(x)=−ln(cosh(x−12xa))+ψmax
and the differential equation becomes,
d2xdt2+1m{−ln(cosh(x−12xa)+ψmax}=1mψn --- (*)
As x changes with t,
dxdt=1m∫{ψn−ψmax+ln(cosh(x−xa2)}dt
dxdt=1m{ψn−ψmax}.t+C+1m∫ln(cosh(x−xa2))dt
when t=0,
dxdt|t=0=0
So, C=0
dxdt=1m{ψn−ψmax}.t+1m∫ln(cosh(x−xa2))dt
Integrating by t again,
x=12m{ψn−ψmax}.t2+1m∬ln(cosh(x−xa2))dtdt
Consider,
1m∬ln(cosh(x−xa2))dtdt=1m∬ln(cosh(x−xa2))1d2xdt2d2xdt2dtdt
But,
d2xdt2dtdt=ddt(dxdt)dtdt
d(dxdt)dt=d(dx)dtdt=d(dx)
So,
d2xdt2dtdt=d(dx)
and using (*),
1m∬ln(cosh(x−xa2))dtdt=
∬ln(cosh(x−xa2))1ψn+{ln(cosh(x−xa2)−ψmax}d(dx)
∬ln(cosh(x−xa2))1ψn−ψmax+ln(cosh(x−xa2)d(dx)
Consider,
ddx(ln(cosh(x−xa2)))=tanh(x−xa2)
And we invert for the time being,
dxd(ln(cosh(x−xa2)))=1tanh(x−xa2)
d(dx)dxd(ln(cosh(x−xa2)))=ddx(1tanh(x−xa2))
d(dx)=ddx(1tanh(x−xa2))dxd(ln(cosh(x−xa2)))
If we let,
L(x)=ln(cosh(x−xa2))1ψn−ψmax+ln(cosh(x−xa2))
So,
1m∬ln(cosh(x−xa2))dtdt
=∬L(x)ddx(1tanh(x−xa2))dxd(ln(cosh(x−xa2)))
=−∬L(x)sech2(x−xa2)tanh2(x−xa2)dxd(ln(cosh(x−xa2)))
=−∬L(x)sech2(x−xa2)tanh2(x−xa2)tanh(x−xa2)(dx)2
=−∬L(x)sech2(x−xa2)tanh(x−xa2)(dx)2
=−∬L(x)1cosh(x−xa2)sinh(x−xa2)(dx)2
If we let,
f(x)=cosh(x−xa2)
and substitute back the expression for L(x) then,
1m∬ln(cosh(x−xa2))dtdt
=−∬ln(f(x))1ψn−ψmax+ln(f(x))1f(x)f′(x)(dx)2
If we let,
u=ln(f(x))
dudx=1f(x)f′(x)
and,
ψc=ψn−ψmax
then,
1m∬ln(cosh(x−xa2))dtdt
=−∬uψc+u1(f′(x))2dudx(dx)2
Since,
eu=f(x)
deudx=eududx=f′(x)
We have,
−∬uψc+ue−2u(dxdu)2dudx(dx)2
=−∬uψc+ue−2udxdu(dx)2
=−∬uψc+ue−2u(dxdu)3(du)2
Since,
u=ln(cosh(x−xa2))
dudx=tanh(x−xa2)
eu=cosh(x−xa2)
e2u=cosh2(x−xa2)
e2u−1=sinh2(x−xa2)
(dudx)2=e2u−1e2u
(dudx)3=(e2u−1e2u)3/2
Finally,
1m∬ln(cosh(x−xa2))dtdt
=−∬uψc+ueu(e2u−1)3/2(du)2
And so,
x=12m{ψn−ψmax}.t2+1m∬ln(cosh(x−xa2))dtdt
x=12mψc.t2−∬uψc+ueu(e2u−1)3/2(du)2
The double integral cannot be solved easily. If we retrace and consider,
x=12mψc.t2−∬uψc+ueu(e2u−1)3/2dudtdudt
x=12mψc.t2−∬uψc+ueu(e2u−1)3/2dudx.dxdtdudt
dxdt=1mψc.t−∫uψc+ueu(e2u−1)3/2dudx.dxdtdu
Using,
dudx=(e2u−1e2u)1/2
dxdt=1mψc.t−∫uψc+ueu(e2u−1)3/2(e2u−1e2u)1/2.dxdtdu
dxdt=1mψc.t−∫uψc+u1(e2u−1).dxdtdu
Differentiating wrt u,
d2xdudt=1mψc.dtdu−uψc+u1(e2u−1).dxdt
Multiplying by dudt,
d2xdudtdudt=d2xdt2=1mψc−uψc+u1(e2u−1).dxdtdudt
Since,
dudxdxdt=dudt=(e2u−1e2u)1/2dxdt
d2xdt2=1mψc−uψc+u1eu(e2u−1)1/2(dxdt)2 --- (**)
where,
u=ln(cosh(x−xa2)) and,
ψc=ψn−ψmax
Expression (**) does not solve for the differential equation (*), but relates the acceleration of the particle with its velocity. We know that the particle is oscillating, its velocity is maximum just before it experiences a retarding force at the center of oscillation, ie,
d2xdt2=0
This is the point at which acceleration turn from positive to negative (or vice versa).
This is the point at which acceleration turn from positive to negative (or vice versa).
dxdt=vmax
Just before the particle experience deceleration, its velocity is maximum.
0=1mψc−uψc+u1eu(e2u−1)1/2(vmax)2
v2max=1mψc+uueu(e2u−1)1/2ψc
When this occurs at x=xa, the particle is ejected, (the center of oscillation need not be the center of ψ), ψ is spherical centered at x=0.)
v2max=1mψc+ln(cosh(xa2))ln(cosh(xa2))eln(cosh(xa2))(e2ln(cosh(xa2))−1)1/2ψc
As, ψc=ψn−ψmax=ψn−ln(cosh(xa2))
v2max=1mψnψmax{ψn−ψmax}eψmax(e2ψmax−1)1/2
where m is the mass density of the particle. The unit dimension of this expression for v2max is consistent. ψmax is the constraint presented by the non-transit particle or the bulk of the particle cloud, ψn is the energy density state of the transit particle after absorbing a photon,
ψn=ψo+ψphoton
ψo is the initial energy state of the transit particle before its encounter with the photon, ψphoton. This expression is valid for ψn−ψmax>0; only when the particle gains more energy than the energy barrier presented by the non-transit particle, ψn>ψmax is vmax non zero.
ψo is the initial energy state of the transit particle before its encounter with the photon, ψphoton. This expression is valid for ψn−ψmax>0; only when the particle gains more energy than the energy barrier presented by the non-transit particle, ψn>ψmax is vmax non zero.
Although all parameters that might affect vmax are here and the unit dimension checks out, this expression for vmax is at best reasonable and needs to be checked.
Another way to look at the situation when the particle is ejected is to see that, as long as vmax is positive at x=xa, no matter under acceleration or deceleration the particle will be at x=xa+δx in the next instant and so, be ejected from the cloud. From expression (**), if the particle is accelerating at x=xa with some positive vmax, the particle is certain to be ejected. If the particle is decelerating,
d2xdt2<0
In the expression (**) for x=xa,
uψc+u1eu(e2u−1)1/2(dxdt)2=1mψc−d2xdt2
deceleration adds to the value of v. The least contribution it makes to v=dxdt is when it is zero. So,
d2xdt2=0
is the limiting condition to eject the transit particle.
Thank you very much. 'Til tomorrow!