Tuesday, July 14, 2015

No Solution But Exit Velocity Anyway

In the post "\(\psi_{max}\) Is New And Important",

\(\cfrac{d^2x}{dt^2}+\cfrac{1}{m}\psi(x)=\cfrac{1}{m}\psi_{n}\)

In general,

\(\psi(x)=-ln(cosh(x-\cfrac{1}{2}x_a)+C\)

When \(x=x_a\), \(\psi(x_a)=0\),

\(C=ln(cosh(\cfrac{1}{2}x_a))\)

Since we consider the case when \(x=0\), \(\psi(x=0)=0\), it so happens that at \(x=\cfrac{x_a}{2}\),

\(C=\psi_{max}=ln(cosh(\cfrac{1}{2}x_a))\)

So,

\(\psi(x)=-ln(cosh(x-\cfrac{1}{2}x_a))+\psi_{max}\)

and the differential equation becomes,

\(\cfrac{d^2x}{dt^2}+\cfrac{1}{m}\left\{-ln(cosh(x-\cfrac{1}{2}x_a)+\psi_{max}\right\}=\cfrac{1}{m}\psi_{n}\) --- (*)

As \(x\) changes with \(t\),

\(\cfrac { dx }{ dt } =\cfrac { 1 }{ m } \int {  \left\{ \psi _{ n }-\psi_{max} +ln(cosh(x-\cfrac { x_a } { 2 } ) \right\}  } dt\)

\( \cfrac { dx }{ dt } =\cfrac { 1 }{ m } \left\{ \psi _{ n }-\psi_{max}  \right\} .t+C+\cfrac { 1 }{ m } \int { ln(cosh(x-\cfrac { x_a } { 2 } ))dt } \)

when \( t=0\),

\( \cfrac { dx }{ dt } |_{ t=0 }=0\)

So, \( C=0\)

\( \cfrac { dx }{ dt } =\cfrac { 1 }{ m } \left\{ \psi _{ n }-\psi_{max} \right\} .t+\cfrac { 1 }{ m } \int {ln(cosh(x-\cfrac { x_a } { 2 } ))dt } \)

Integrating by \(t\) again,

\(x=\cfrac { 1 }{ 2m } \left\{ \psi _{ n }-\psi_{max}  \right\} .t^{ 2 }+\cfrac { 1 }{ m } \iint { ln(cosh(x-\cfrac { x_a } { 2 } ))dtdt } \)

Consider,

\( \cfrac { 1 }{ m } \iint { ln(cosh(x-\cfrac { x_a } { 2 } ))dtdt } =\cfrac { 1 }{ m } \iint { ln(cosh(x-\cfrac { x_a } { 2 } ))\cfrac { 1 }{ \cfrac { d^{ 2 }x }{ dt^{ 2 } }  } \cfrac { d^{ 2 }x }{ dt^{ 2 } } dtdt } \)

But,

\( \cfrac { d^{ 2 }x }{ dt^{ 2 } } dtdt=\cfrac { d }{ dt } \left( \cfrac { dx }{ dt }  \right) dtdt\)

\( d\left( \cfrac { dx }{ dt }  \right) dt=\cfrac { d(dx) }{ dt } dt=d(dx)\)

So,

\( \cfrac { d^{ 2 }x }{ dt^{ 2 } } dtdt=d(dx)\)

and using (*),

\( \cfrac { 1 }{ m } \iint { ln(cosh(x-\cfrac { x_a } { 2 } ))dtdt } =\)

\( \iint { ln(cosh(x-\cfrac { x_a } { 2 } ))\cfrac { 1 }{ \psi _{ n }+\left\{ ln(cosh(x-\cfrac { x_a } { 2 } )-\psi_{max}  \right\}  } d(dx) } \)

\( \iint { ln(cosh(x-\cfrac { x_a } { 2 } ))\cfrac { 1 }{ \psi _{ n }-\psi_{max} +ln(cosh(x-\cfrac { x_a } { 2 } ) } d(dx) } \)

Consider,

\( \cfrac { d }{ dx } \left( ln(cosh(x-\cfrac { x_a } { 2 } )) \right) =tanh(x-\cfrac { x_a } { 2 } )\)

And we invert for the time being,

\( \cfrac { dx }{ d\left( ln(cosh(x-\cfrac { x_a } { 2 } )) \right)  } =\cfrac { 1 }{ tanh(x-\cfrac { x_a } { 2 } ) } \)

\( \cfrac { d(dx) }{ dxd\left( ln(cosh(x-\cfrac { x_a } { 2 } )) \right)  } =\cfrac { d }{ dx } \left( \cfrac { 1 }{ tanh(x-\cfrac { x_a } { 2 } ) }  \right) \)

\( d(dx)=\cfrac { d }{ dx } \left( \cfrac { 1 }{ tanh(x-\cfrac { x_a } { 2 } ) }  \right) dxd\left( ln(cosh(x-\cfrac { x_a } { 2 } )) \right) \)

If we let,

\(L(x)=ln(cosh(x-\cfrac { x_a } { 2 } ))\cfrac { 1 }{ \psi _{ n }-\psi_{max} +ln(cosh(x-\cfrac { x_a } { 2 } ) )}  \)

So,

\( \cfrac { 1 }{ m } \iint { ln(cosh(x-\cfrac { x_a } { 2 } ))dtdt } \)

\(= \iint { L(x)  } \cfrac { d }{ dx } \left( \cfrac { 1 }{ tanh(x-\cfrac { x_a } { 2 } ) }  \right) dxd\left( ln(cosh(x-\cfrac { x_a } { 2 } )) \right) \)

\( =-\iint { L(x)  } \cfrac { sech^{ 2 }(x-\cfrac { x_a } { 2 } ) }{ tanh^{ 2 }(x-\cfrac { x_a } { 2 } ) } dxd\left( ln(cosh(x-\cfrac { x_a } { 2 } )) \right) \)

\( =-\iint { L(x) } \cfrac { sech^{ 2 }(x-\cfrac { x_a } { 2 } ) }{ tanh^{ 2 }(x-\cfrac { x_a } { 2 } ) } { tanh(x-\cfrac { x_a } { 2 } ) }(dx)^{ 2 }\)

\( =-\iint { L(x)  } \cfrac { sech^{ 2 }(x-\cfrac { x_a } { 2 } ) }{ tanh(x-\cfrac { x_a } { 2 } ) } (dx)^{ 2 }\)

\( =-\iint { L(x) } \cfrac { 1 }{ cosh(x-\cfrac { x_a } { 2 } )sinh(x-\cfrac { x_a } { 2 } ) } (dx)^{ 2 }\)

If we let,

\(f(x)=cosh(x-\cfrac { x_a } { 2 } )\)

and substitute back the expression for \(L(x)\) then,

\( \cfrac { 1 }{ m } \iint { ln(cosh(x-\cfrac { x_a } { 2 } ))dtdt } \)

\(=-\iint { ln(f(x))\cfrac { 1 }{ \psi _{ n }-\psi_{max}+ln(f(x) ) }   } \cfrac { 1 }{ f(x)f^{'}(x)} (dx)^{ 2 }\)

If we let,

\(  u=ln(f(x))\)

\( \cfrac { du }{ dx } =\cfrac { 1 }{ f(x) } f^{ ' }(x)\)

and,

\(\psi_c=\psi _{ n }-\psi_{max}\)

then,

\( \cfrac { 1 }{ m } \iint { ln(cosh(x-\cfrac { x_a } { 2 } ))dtdt } \)

\(= -\iint { \cfrac { u }{ \psi _{ c }+u }  } \cfrac { 1 }{ (f^{ ' }(x))^{ 2 } } \cfrac { du }{ dx } (dx)^{ 2 }\)

Since,

\( e^{ u }=f(x)\)

\( \cfrac { de^{ u } }{ dx } =e^{ u }\cfrac { du }{ dx } =f^{ ' }(x)\)

We have,

\( -\iint { \cfrac { u }{ \psi _{ c }+u }  } e^{ -2u }\left( \cfrac { dx }{ du }  \right) ^{ 2 }\cfrac { du }{ dx } (dx)^{ 2 }\)

\(= -\iint { \cfrac { u }{ \psi _{ c }+u }  } e^{ -2u }\cfrac { dx }{ du } (dx)^{ 2 }\)

\( =-\iint { \cfrac { u }{ \psi _{ c }+u }  } e^{ -2u }\left( \cfrac { dx }{ du }  \right) ^{ 3 }(du)^{ 2 }\)

Since,

\( u=ln(cosh(x-\cfrac { x_{ a } }{ 2 } ))\)

\( \cfrac { du }{ dx } =tanh(x-\cfrac { x_{ a } }{ 2 } )\)

\( e^{ u }=cosh(x-\cfrac { x_{ a } }{ 2 } )\)

\( e^{ 2u }=cosh^{ 2 }(x-\cfrac { x_{ a } }{ 2 } )\)

\( e^{ 2u }-1=sinh^{ 2 }(x-\cfrac { x_{ a } }{ 2 } )\)

\( (\cfrac { du }{ dx } )^{ 2 }=\cfrac { e^{ 2u }-1 }{ e^{ 2u } } \)

\( (\cfrac { du }{ dx } )^{ 3 }=\left( \cfrac { e^{ 2u }-1 }{ e^{ 2u } }  \right) ^{ 3/2 }\)

Finally,

\( \cfrac { 1 }{ m } \iint { ln(cosh(x-\cfrac { x_a } { 2 } ))dtdt } \)

\(= -\iint { \cfrac { u }{ \psi _{ c }+u }  } \cfrac { e^{ u } }{ \left( { e^{ 2u }-1 } \right) ^{ 3/2 } } (du)^{ 2 }\)

And so,

\(x=\cfrac { 1 }{ 2m } \left\{ \psi _{ n }-\psi_{max}  \right\} .t^{ 2 }+\cfrac { 1 }{ m } \iint { ln(cosh(x-\cfrac { x_a } { 2 } ))dtdt } \)

\(x=\cfrac { 1 }{ 2m } \psi _{ c } .t^{ 2 } -\iint { \cfrac { u }{ \psi _{ c }+u }  } \cfrac { e^{ u } }{ \left( { e^{ 2u }-1 } \right) ^{ 3/2 } } (du)^{ 2 }\)

The double integral cannot be solved easily.  If we retrace and consider,

\(x=\cfrac { 1 }{ 2m }\psi _{ c } .t^{ 2 } -\iint { \cfrac { u }{ \psi _{ c }+u }  } \cfrac { e^{ u } }{ \left( { e^{ 2u }-1 } \right) ^{ 3/2 } } \cfrac{du}{dt}dudt\)

\(x=\cfrac { 1 }{ 2m } \psi _{ c }  .t^{ 2 }-\iint { \cfrac { u }{ \psi _{ c }+u }  } \cfrac { e^{ u } }{ \left( { e^{ 2u }-1 } \right) ^{ 3/2 } } \cfrac{du}{dx}.\cfrac{dx}{dt}dudt\)

\(\cfrac{dx}{dt}=\cfrac { 1 }{ m } \psi _{ c }  .t-\int { \cfrac { u }{ \psi _{ c }+u }  } \cfrac { e^{ u } }{ \left( { e^{ 2u }-1 } \right) ^{ 3/2 } } \cfrac{du}{dx}.\cfrac{dx}{dt}du\)

Using,

\(\cfrac { du }{ dx } =(\cfrac { e^{ 2u }-1 }{ e^{ 2u } } )^{1/2}\)

\(\cfrac{dx}{dt}=\cfrac { 1 }{ m }  \psi _{ c }   .t-\int { \cfrac { u }{ \psi _{ c }+u }  } \cfrac { e^{ u } }{ \left( { e^{ 2u }-1 } \right) ^{ 3/2 } } (\cfrac { e^{ 2u }-1 }{ e^{ 2u } } )^{1/2}.\cfrac{dx}{dt}du\)

\(\cfrac{dx}{dt}=\cfrac { 1 }{ m } \psi _{ c }  .t-\int { \cfrac { u }{ \psi _{ c }+u }  } \cfrac { 1 }{ \left( { e^{ 2u }-1 } \right)  }.\cfrac{dx}{dt}du\)

Differentiating wrt \(u\),

\(\cfrac { d^{ 2 }x }{ dudt } =\cfrac { 1 }{ m } \psi _{ c } .\cfrac { dt }{ du } -{ \cfrac { u }{ \psi _{ c }+u }  }\cfrac { 1 }{ \left( { e^{ 2u }-1 } \right)  } .\cfrac { dx }{ dt } \)

Multiplying by \(\cfrac { du }{ dt } \),

\(\cfrac { d^{ 2 }x }{ dudt } \cfrac { du }{ dt } =\cfrac { d^{ 2 }x }{ dt^{ 2 } } =\cfrac { 1 }{ m }  \psi _{ c }   -{ \cfrac { u }{ \psi _{ c }+u }  }\cfrac { 1 }{ \left( { e^{ 2u }-1 } \right)  } .\cfrac { dx }{ dt } \cfrac { du }{ dt } \)

Since,

\(\cfrac { du }{ dx } \cfrac { dx }{ dt }=\cfrac { du }{ dt }  =(\cfrac { e^{ 2u }-1 }{ e^{ 2u } } )^{ 1/2 }\cfrac { dx }{ dt } \)

\(\cfrac { d^{ 2 }x }{ dt^{ 2 } } =\cfrac { 1 }{ m }  \psi _{ c }  -{ \cfrac { u }{ \psi _{ c }+u }  }\cfrac { 1 }{ e^{ u }\left( { e^{ 2u }-1 } \right) ^{ 1/2 } } (\cfrac { dx }{ dt } )^{ 2 }\) --- (**)

where,

\( u=ln(cosh(x-\cfrac { x_{ a } }{ 2 } ))\)  and,

\(\psi_c=\psi _{ n }-\psi_{max}\)

Expression (**)  does not solve for the differential equation (*), but relates the acceleration of the particle with its velocity.  We know that the particle is oscillating, its velocity is maximum just before it experiences a retarding force at the center of oscillation, ie,

\(\cfrac { d^{ 2 }x }{ dt^{ 2 } } =0\)

This is the point at which acceleration turn from positive to negative (or vice versa).

\(\cfrac { dx }{ dt }=v_{max}\)

Just before the particle experience deceleration, its velocity is maximum.

\(0 =\cfrac { 1 }{ m } \psi _{c }   -{ \cfrac { u }{ \psi _{ c }+u }  }\cfrac { 1 }{ e^{ u }\left( { e^{ 2u }-1 } \right) ^{ 1/2 } } (v_{max})^{ 2 }\) 

\(v^{ 2 }_{ { max } }=\cfrac { 1 }{ m } \cfrac { \psi _{ c }+u }{ u } e^{ u }\left( { e^{ 2u }-1 } \right) ^{ 1/2 }\psi _{ c } \)

When this occurs at \(x=x_a\), the particle is ejected,  (the center of oscillation need not be the center of \(\psi\)), \(\psi\) is spherical centered at \(x=0\).)

\(v^{ 2 }_{ { max } }=\cfrac { 1 }{ m } \cfrac { \psi _{ c }+ln(cosh(\cfrac { x_{ a } }{ 2 } )) }{ ln(cosh(\cfrac { x_{ a } }{ 2 } )) } e^{ ln(cosh(\cfrac { x_{ a } }{ 2 } )) }\left( { e^{ 2ln(cosh(\cfrac { x_{ a } }{ 2 } )) }-1 } \right) ^{ 1/2 } \psi _{ c }  \)

As,   \(\psi_c=\psi_n-\psi_{max}=\psi_n-ln(cosh(\cfrac { x_{ a } }{ 2 } ))\)

\(v^{ 2 }_{ { max } }=\cfrac { 1 }{ m } \cfrac { \psi _{ n } }{ \psi _{ max } }\left\{ \psi _{ n }-\psi _{ max } \right\}  e^{ \psi _{ max } }\left( { e^{ 2\psi _{ max } }-1 } \right) ^{ 1/2 }\)

where \(m\) is the mass density of the particle.  The unit dimension of this expression for \(v^2_{max}\) is consistent.  \(\psi_{max}\) is the constraint presented by the non-transit particle or the bulk of the particle cloud,  \(\psi_n\) is the energy density state of the transit particle after absorbing a photon,  

\(\psi_n=\psi_o+\psi_{photon}\)

\(\psi_o\) is the initial energy state of the transit particle before its encounter with the photon, \(\psi_{photon}\).  This expression is valid for \(\psi_n-\psi_{max}\gt0\); only when the particle gains more energy than the energy barrier presented by the non-transit particle, \(\psi_n\gt\psi_{max}\) is \(v_{max}\) non zero.

Although all parameters that might affect \(v_{max}\) are here and the unit dimension checks out, this expression for \(v_{max}\) is at best reasonable and needs to be checked.

Another way to look at the situation when the particle is ejected is to see that, as long as \(v_{max}\) is positive at \(x=x_a\), no matter under acceleration or deceleration the particle will be at \(x=x_a+\delta x\) in the next instant and so, be ejected from the cloud.  From expression (**), if the particle is accelerating at \(x=x_a\) with some positive \(v_{max}\), the particle is certain to be ejected.  If the particle is decelerating,

\(\cfrac { d^{ 2 }x }{ dt^{ 2 } }\lt0\)

In the expression (**) for \(x=x_a\),

\({ \cfrac { u }{ \psi _{ c }+u }  }\cfrac { 1 }{ e^{ u }\left( { e^{ 2u }-1 } \right) ^{ 1/2 } } (\cfrac { dx }{ dt } )^{ 2 }=\cfrac { 1 }{ m }  \psi _{ c }-\cfrac { d^{ 2 }x }{ dt^{ 2 } }\)

deceleration adds to the value of \(v\).  The least  contribution it makes to \(v=\cfrac { dx }{ dt }\) is when it is zero. So,

\(\cfrac { d^{ 2 }x }{ dt^{ 2 } }=0\)

is the limiting condition to eject the transit particle.

Thank you very much.  'Til tomorrow!