Consider energy conservation equation again.
v2t+v2s=c2
Differentiating with respect to time,
dv2tdt+2vs.dvsdt=0
−2vs.vsdt=dv2tdx.dxdt
since vsdt=g, dxdt=vs and γ(x)2=vtc2
g=−12dv2tdx=−c22dγ(x)2dx
but
g=Dd(ds(x))dx
(This is an assumption equivalent to assuming that time speed is a terminal velocity in free space related to space density by v2t=F−Dds(x) where F,D are constants and ds(x) is a decreasing exponential with a value of dn at x→∞, the normal density of free space. Refer to post "Technically, the Moon")
Dd(ds(x))dx=−c22dγ(x)2dx
Integrating both sides,
γ(x)2=−2Dc2ds(x)+A
Since x→∞, ds(x)→dn and γ(x)→1
A=1+2Dc2dn
γ(x)2=1−2Dc2(ds(x)−dn)
In a black hole γ(x) = 0,
2Dc2(dB−dn)=1
∴2Dc2=1(dB−dn)
So,
γ(x)2=1−ds(x)−dndB−dn
γ(x)2=1−ds(x)−dnde−dnde−dndB−dn
∵dB−dnde−dn = 7.191e8
γ(x)=√1−17.191e8ds(x)−dnde−dn
γ(x)=√1−1.3906e(−9)ds(x)−dnde−dn
When space density compression goes beyond 7.191e8, γ(x) is complex.