Sunday, May 11, 2014

Vortex and Exponential Drag

Consider now the centripetal force \({F}_{c}(x)\) at depth \(x ≤ h\),

\({F}_{c}(x) = Fc - (h-x)\rho .g.\triangle A\)

where \(\rho\) is the density of the fluid and \(g\) is gravity and \(\triangle A\), an elemental area at depth \((h-x)\) and radius \(y\).  As depth increases, \({F}{c}(x)\) decreases and the opening of the vortex closes up, this models the vortex as a inverted cone.  We know that \(F_c(0) = 0\), therefore,

\(F_c = h. \rho .g.\triangle A\)

\({F}_{c}(x) = \rho .g.\triangle A.x = \triangle m.y.w^2\),

\(w^2 = \rho .g.\triangle A.\frac { x }{\triangle m.y}\)

where \(w\) is the angular velocity of an elemental volume at depth \((h-x)\) just on the slant surface of the cone at a radius of \(y\) and \(\triangle m\) an elemental mass of fluid in circular motion.

\(\because \triangle m = \triangle A. \triangle y. \rho\)

 \(w^2 = g.\frac { x }{y.\triangle y}\)

Let the angular velocity profile (an assumption) beyond radius \(y\) be

\(w(r) = we^{-\frac{r-y}{y}}\), where \(r ≥ y\)

\([w(r)]^2 = g.\frac{(x)}{ y.\triangle y}.e^{-\frac{2r-2y}{y}}\), where \(r ≥ y\)

We consider the circular motion beyond \(y\) as concentric elemental rings with decreasing speed.

The angular kinetic energy of one such ring is,

\(\triangle VKE_r = \frac { 1 }{ 2 }I(r)w^{ 2 }\)

where \(I(r)\) is the moment of Inertia of a thin ring of mass \( m\), radius r spinning at its center axis.

\(I(r)= m.r^2\), where \(m = 2\pi.r.\triangle r . \triangle x.\rho\)

\(I(r)=2\pi.\rho.r^3.\triangle r . \triangle x\)

So,

\(\triangle VKE_r = \pi.\rho.g.\frac{x}{ y.\triangle y}.\triangle x.r^3e^{-\frac{2r-2y}{y}} \triangle r\)

since \(\frac{\triangle x}{\triangle y}=\frac{h}{r_c}\) and \(\frac{x}{y}=\frac{h}{r_c}\),   where \(r_c\) is the radius of the vortex.

\(\triangle VKE_r = \pi.\rho.g.\frac{h^2}{r^2_c}.r^3e^{-\frac{2r-2y}{y}} \triangle r\)  

Kinetic Energy of all rings at depth (h-x) beyond radius y is,

\(VKE_r =\int^{\infty}_{y}\triangle VKE_r dr= \pi.\rho.g.\frac{h^2}{r^2_c}\int^{\infty}_{y} r^3e^{-\frac{2r-2y}{y}}dr\)

since

\( \int_y^\infty r^3 (e^{-\frac{2r-2y}{y}}) dr =|^{r \rightarrow \infty}_{r = y} -\frac { 1 }{ 8 } ye^{ { - }\frac { 2r-2y }{ y }}(4r^{ 3 }+6r^{ 2 }y+6ry^{ 2 }+3y^{ 3 }) = \frac {19}{8}y^4\)

\(VKE_r =\frac {19}{8}\pi.\rho.g.\frac{h^2}{r^2_c}.y^4=\frac {19}{8}\pi.\rho.g.\frac{r^2_c}{h^2}.x^4\),

For total VKE over all depth \(x\), we consider,

\(\triangle VKE = VKE_r = \frac {19}{8}\pi.\rho.g.\frac{r^2_c}{h^2}.x^4\)

\(VKE = \frac {19}{8}\pi.\rho.g.\frac{r^2_c}{h^2}\int^h_0 {x^4} dx\),

\(VKE = \frac {19}{8}\pi.\rho.g.\frac{r^2_c}{h^2}|^h_0 \frac{x^5}{5}\)

\(VKE = \frac {19}{40}\pi\rho g r^2_c h^2.h\)

This is the vortex kinetic enegry with exponential drag profile \(w(r)=w.e^{-(\frac{r-y}{y})}\).  The problem with this derivation is that the drag profile is unproven and the unit for VKE in the last expression is not consistent.