Consider now the centripetal force Fc(x) at depth x≤h,
Fc(x)=Fc−(h−x)ρ.g.△A
where ρ is the density of the fluid and g is gravity and △A, an elemental area at depth (h−x) and radius y. As depth increases, Fc(x) decreases and the opening of the vortex closes up, this models the vortex as a inverted cone. We know that Fc(0)=0, therefore,
Fc=h.ρ.g.△A
Fc(x)=ρ.g.△A.x=△m.y.w2,
w2=ρ.g.△A.x△m.y
where w is the angular velocity of an elemental volume at depth (h−x) just on the slant surface of the cone at a radius of y and △m an elemental mass of fluid in circular motion.
∵
w^2 = g.\frac { x }{y.\triangle y}
Let the angular velocity profile (an assumption) beyond radius y be
w(r) = we^{-\frac{r-y}{y}}, where r ≥ y
[w(r)]^2 = g.\frac{(x)}{ y.\triangle y}.e^{-\frac{2r-2y}{y}}, where r ≥ y
We consider the circular motion beyond y as concentric elemental rings with decreasing speed.
The angular kinetic energy of one such ring is,
\triangle VKE_r = \frac { 1 }{ 2 }I(r)w^{ 2 }
where I(r) is the moment of Inertia of a thin ring of mass m, radius r spinning at its center axis.
I(r)= m.r^2, where m = 2\pi.r.\triangle r . \triangle x.\rho
I(r)=2\pi.\rho.r^3.\triangle r . \triangle x
So,
\triangle VKE_r = \pi.\rho.g.\frac{x}{ y.\triangle y}.\triangle x.r^3e^{-\frac{2r-2y}{y}} \triangle r
since \frac{\triangle x}{\triangle y}=\frac{h}{r_c} and \frac{x}{y}=\frac{h}{r_c}, where r_c is the radius of the vortex.
\triangle VKE_r = \pi.\rho.g.\frac{h^2}{r^2_c}.r^3e^{-\frac{2r-2y}{y}} \triangle r
Kinetic Energy of all rings at depth (h-x) beyond radius y is,
VKE_r =\int^{\infty}_{y}\triangle VKE_r dr= \pi.\rho.g.\frac{h^2}{r^2_c}\int^{\infty}_{y} r^3e^{-\frac{2r-2y}{y}}dr
since
\int_y^\infty r^3 (e^{-\frac{2r-2y}{y}}) dr =|^{r \rightarrow \infty}_{r = y} -\frac { 1 }{ 8 } ye^{ { - }\frac { 2r-2y }{ y }}(4r^{ 3 }+6r^{ 2 }y+6ry^{ 2 }+3y^{ 3 }) = \frac {19}{8}y^4
VKE_r =\frac {19}{8}\pi.\rho.g.\frac{h^2}{r^2_c}.y^4=\frac {19}{8}\pi.\rho.g.\frac{r^2_c}{h^2}.x^4,
For total VKE over all depth x, we consider,
\triangle VKE = VKE_r = \frac {19}{8}\pi.\rho.g.\frac{r^2_c}{h^2}.x^4
VKE = \frac {19}{8}\pi.\rho.g.\frac{r^2_c}{h^2}\int^h_0 {x^4} dx,
VKE = \frac {19}{8}\pi.\rho.g.\frac{r^2_c}{h^2}|^h_0 \frac{x^5}{5}
VKE = \frac {19}{40}\pi\rho g r^2_c h^2.h
This is the vortex kinetic enegry with exponential drag profile w(r)=w.e^{-(\frac{r-y}{y})}. The problem with this derivation is that the drag profile is unproven and the unit for VKE in the last expression is not consistent.