Processing math: 35%

Sunday, May 11, 2014

Vortex and Exponential Drag

Consider now the centripetal force Fc(x) at depth xh,

Fc(x)=Fc(hx)ρ.g.A

where ρ is the density of the fluid and g is gravity and A, an elemental area at depth (hx) and radius y.  As depth increases, Fc(x) decreases and the opening of the vortex closes up, this models the vortex as a inverted cone.  We know that Fc(0)=0, therefore,

Fc=h.ρ.g.A

Fc(x)=ρ.g.A.x=m.y.w2,

w2=ρ.g.A.xm.y

where w is the angular velocity of an elemental volume at depth (hx) just on the slant surface of the cone at a radius of y and m an elemental mass of fluid in circular motion.



 w^2 = g.\frac { x }{y.\triangle y}

Let the angular velocity profile (an assumption) beyond radius y be

w(r) = we^{-\frac{r-y}{y}}, where r ≥ y

[w(r)]^2 = g.\frac{(x)}{ y.\triangle y}.e^{-\frac{2r-2y}{y}}, where r ≥ y

We consider the circular motion beyond y as concentric elemental rings with decreasing speed.

The angular kinetic energy of one such ring is,

\triangle VKE_r = \frac { 1 }{ 2 }I(r)w^{ 2 }

where I(r) is the moment of Inertia of a thin ring of mass m, radius r spinning at its center axis.

I(r)= m.r^2, where m = 2\pi.r.\triangle r . \triangle x.\rho

I(r)=2\pi.\rho.r^3.\triangle r . \triangle x

So,

\triangle VKE_r = \pi.\rho.g.\frac{x}{ y.\triangle y}.\triangle x.r^3e^{-\frac{2r-2y}{y}} \triangle r

since \frac{\triangle x}{\triangle y}=\frac{h}{r_c} and \frac{x}{y}=\frac{h}{r_c},   where r_c is the radius of the vortex.

\triangle VKE_r = \pi.\rho.g.\frac{h^2}{r^2_c}.r^3e^{-\frac{2r-2y}{y}} \triangle r  

Kinetic Energy of all rings at depth (h-x) beyond radius y is,

VKE_r =\int^{\infty}_{y}\triangle VKE_r dr= \pi.\rho.g.\frac{h^2}{r^2_c}\int^{\infty}_{y} r^3e^{-\frac{2r-2y}{y}}dr

since

\int_y^\infty r^3 (e^{-\frac{2r-2y}{y}}) dr =|^{r \rightarrow \infty}_{r = y} -\frac { 1 }{ 8 } ye^{ { - }\frac { 2r-2y }{ y }}(4r^{ 3 }+6r^{ 2 }y+6ry^{ 2 }+3y^{ 3 }) = \frac {19}{8}y^4

VKE_r =\frac {19}{8}\pi.\rho.g.\frac{h^2}{r^2_c}.y^4=\frac {19}{8}\pi.\rho.g.\frac{r^2_c}{h^2}.x^4,

For total VKE over all depth x, we consider,

\triangle VKE = VKE_r = \frac {19}{8}\pi.\rho.g.\frac{r^2_c}{h^2}.x^4

VKE = \frac {19}{8}\pi.\rho.g.\frac{r^2_c}{h^2}\int^h_0 {x^4} dx,

VKE = \frac {19}{8}\pi.\rho.g.\frac{r^2_c}{h^2}|^h_0 \frac{x^5}{5}

VKE = \frac {19}{40}\pi\rho g r^2_c h^2.h

This is the vortex kinetic enegry with exponential drag profile w(r)=w.e^{-(\frac{r-y}{y})}.  The problem with this derivation is that the drag profile is unproven and the unit for VKE in the last expression is not consistent.