(△s)2=(x2+y2).(△θ)2
(△s)2=(x2+b2(1−x2a2)).(△θ)2
(△s)2=(x2(1−b2a2)+b2).(△θ)2
Consider xa=cos(θ) and yb=sin(θ)
Since, sin2(θ)+cos2(θ)=1=x2a2+y2b2, which is equation of the ellipse.
Substituting x=acos(θ) into the equation for △s,
(△s)2=(a2cos2θ(1−b2a2)+b2).(△θ)2
∬(ds)2=∬cos2θ(a2−b2)+b2.(dθ)2
∫s(ds)=∫12(θ+sin(θ)cos(θ))(a2−b2)+θb2+A.dθ
When θ=π,s=0, so sdsdθ=0 since A is independent of θ and not infinity (infinity is not a constant).
∴12π(a2−b2)+πb2+A=0
A=−12π(a2+b2), so
∫s(ds)=∫12(θ+sin(θ)cos(θ))(a2−b2)+θb2−12π(a2+b2)dθ
Formulating the definite integral in the positive x direction,
s22=14(θ2−cos2θ)(a2−b2)+θ22b2−12π(a2+b2)θ|0π
=−14(π2−1)(a2−b2)−π22b2+12π2(a2+b2)−14(a2−b2)
=−14π2(a2+b2)+12π2(a2+b2)
=14π2(a2+b2)
s=π√2√(a2+b2)
p=2s=2π√(a2+b2)2