Saturday, May 24, 2014

Ellipse 2014

\(\triangle s\quad =\quad \sqrt { x^{ 2 }+y^{ 2 } } .\triangle \theta \)

\((\triangle s)^{ 2 }=(x^{ 2 }+y^{ 2 }).(\triangle \theta )^{ 2 }\)

\((\triangle s)^{ 2 }=(x^{ 2 }+b^{ 2 }(1-\cfrac { x^{ 2 } }{ a^{ 2 } } )).(\triangle \theta )^{ 2 }\)

\((\triangle s)^{ 2 }=({ x }^{ 2 }(1-\cfrac { b^{ 2 } }{ a^{ 2 } } )+b^{ 2 }).(\triangle \theta )^{ 2 }\)

Consider \(\cfrac { x }{ a } =cos(\theta )\)    and   \(\cfrac { y }{ b } =sin(\theta )\)

Since, \(sin^2(\theta )+ cos^2(\theta ) = 1= \cfrac { x^2 }{ a^2 }+\cfrac { y^2 }{ b^2 }\),    which is equation of the ellipse.

Substituting \(x=acos(\theta )\) into the equation for \(\triangle s\),

\((\triangle s)^{ 2 }=( a^2\cos ^{ 2 }{ \theta  }(1-\cfrac { b^{ 2 } }{ a^{ 2 } } )+b^{ 2 }).(\triangle \theta )^{ 2 }\)

\(\iint {(ds)^2}=\iint { \cos ^{ 2 }{ \theta  } ({ a }^{ 2 }-b^{ 2 })+{ b }^{ 2 } }. { (d\theta ) }^{ 2 }\)

\(\int {s(ds)}=\int {\frac{1}{2}( \theta +\sin( \theta )\cos( \theta ))({ a }^{ 2 }-b^{ 2 })+\theta{ b }^{ 2 }+A }. { d\theta }\)

\( s\cfrac { ds }{ d\theta  } =\cfrac { 1 }{ 2 } (\theta +\sin  (\theta )\cos  (\theta ))({ a }^{ 2 }-b^{ 2 })+\theta { b }^{ 2 }+A\)

When \( \theta =\pi \),\(s=0\),   so \(s\cfrac { ds }{ d\theta  }=0\)  since \(A\) is independent of \(\theta\) and not infinity (infinity is not a constant).

\(\therefore  \cfrac { 1 }{ 2 } \pi ({ a }^{ 2 }-b^{ 2 })+\pi { b }^{ 2 }+A=0\)

\( A=-\cfrac { 1 }{ 2 } \pi ({ a }^{ 2 }+b^{ 2 })\),    so

\( \int {s(ds)}=\int {\cfrac { 1 }{ 2 } (\theta +\sin  (\theta )\cos  (\theta ))({ a }^{ 2 }-b^{ 2 })+\theta { b }^{ 2 }-\cfrac { 1 }{ 2 } \pi ({ a }^{ 2 }+b^{ 2 })} { d\theta }\)

Formulating the definite integral in the positive \(x\) direction,

\( \cfrac { { s }^{ 2 } }{ 2 } =\cfrac { 1 }{ 4 } (\theta ^{ 2 }-{ \cos ^{ 2 }{ \theta  }  })({ a }^{ 2 }-b^{ 2 })+\cfrac { { \theta  }^{ 2 } }{ 2 } { b }^{ 2 }-\cfrac { 1 }{ 2 } \pi ({ a }^{ 2 }+b^{ 2 })\theta |^{ 0 }_{ \pi  }\)

\( =-\cfrac { 1 }{ 4 } (\pi ^{ 2 }-{ 1 })({ a }^{ 2 }-b^{ 2 })-\cfrac { { \pi  }^{ 2 } }{ 2 } { b }^{ 2 }+\cfrac { 1 }{ 2 } { \pi  }^{ 2 }({ a }^{ 2 }+b^{ 2 })-\cfrac { 1 }{ 4 } ({ a }^{ 2 }-b^{ 2 })\)

\( =-\cfrac { 1 }{ 4 } \pi ^{ 2 }({ a }^{ 2 }+b^{ 2 })+\cfrac { 1 }{ 2 } { \pi  }^{ 2 }({ a }^{ 2 }+b^{ 2 })\)

\( =\cfrac { 1 }{ 4 } \pi ^{ 2 }({ a }^{ 2 }+b^{ 2 })\)

\( s\quad =\cfrac { \pi  }{ \sqrt { 2 }  } \sqrt { ({ a }^{ 2 }+b^{ 2 }) } \)

\( p=2s=2\pi \sqrt { \cfrac { ({ a }^{ 2 }+b^{ 2 }) }{ 2 }  } \)