(△s)2=(x2+y2).(△θ)2
(△s)2=(x2+b2(1−x2a2)).(△θ)2
(△s)2=(x2(1−b2a2)+b2).(△θ)2
Consider xa=cos(θ) and yb=sin(θ)
Since, sin2(θ)+cos2(θ)=1=x2a2+y2b2, which is equation of the ellipse.
Substituting x=acos(θ) into the equation for △s,
(△s)2=(a2cos2θ(1−b2a2)+b2).(△θ)2
∬
\int {s(ds)}=\int {\frac{1}{2}( \theta +\sin( \theta )\cos( \theta ))({ a }^{ 2 }-b^{ 2 })+\theta{ b }^{ 2 }+A }. { d\theta }
When \theta =\pi ,s=0, so s\cfrac { ds }{ d\theta }=0 since A is independent of \theta and not infinity (infinity is not a constant).
\therefore \cfrac { 1 }{ 2 } \pi ({ a }^{ 2 }-b^{ 2 })+\pi { b }^{ 2 }+A=0
A=-\cfrac { 1 }{ 2 } \pi ({ a }^{ 2 }+b^{ 2 }), so
\int {s(ds)}=\int {\cfrac { 1 }{ 2 } (\theta +\sin (\theta )\cos (\theta ))({ a }^{ 2 }-b^{ 2 })+\theta { b }^{ 2 }-\cfrac { 1 }{ 2 } \pi ({ a }^{ 2 }+b^{ 2 })} { d\theta }
Formulating the definite integral in the positive x direction,
\cfrac { { s }^{ 2 } }{ 2 } =\cfrac { 1 }{ 4 } (\theta ^{ 2 }-{ \cos ^{ 2 }{ \theta } })({ a }^{ 2 }-b^{ 2 })+\cfrac { { \theta }^{ 2 } }{ 2 } { b }^{ 2 }-\cfrac { 1 }{ 2 } \pi ({ a }^{ 2 }+b^{ 2 })\theta |^{ 0 }_{ \pi }
=-\cfrac { 1 }{ 4 } (\pi ^{ 2 }-{ 1 })({ a }^{ 2 }-b^{ 2 })-\cfrac { { \pi }^{ 2 } }{ 2 } { b }^{ 2 }+\cfrac { 1 }{ 2 } { \pi }^{ 2 }({ a }^{ 2 }+b^{ 2 })-\cfrac { 1 }{ 4 } ({ a }^{ 2 }-b^{ 2 })
=-\cfrac { 1 }{ 4 } \pi ^{ 2 }({ a }^{ 2 }+b^{ 2 })+\cfrac { 1 }{ 2 } { \pi }^{ 2 }({ a }^{ 2 }+b^{ 2 })
=\cfrac { 1 }{ 4 } \pi ^{ 2 }({ a }^{ 2 }+b^{ 2 })
s\quad =\cfrac { \pi }{ \sqrt { 2 } } \sqrt { ({ a }^{ 2 }+b^{ 2 }) }
p=2s=2\pi \sqrt { \cfrac { ({ a }^{ 2 }+b^{ 2 }) }{ 2 } }