Processing math: 32%

Saturday, May 24, 2014

Ellipse 2014

s=x2+y2.θ

(s)2=(x2+y2).(θ)2

(s)2=(x2+b2(1x2a2)).(θ)2

(s)2=(x2(1b2a2)+b2).(θ)2

Consider xa=cos(θ)    and   yb=sin(θ)

Since, sin2(θ)+cos2(θ)=1=x2a2+y2b2,    which is equation of the ellipse.

Substituting x=acos(θ) into the equation for s,

(s)2=(a2cos2θ(1b2a2)+b2).(θ)2



\int {s(ds)}=\int {\frac{1}{2}( \theta +\sin( \theta )\cos( \theta ))({ a }^{ 2 }-b^{ 2 })+\theta{ b }^{ 2 }+A }. { d\theta }

s\cfrac { ds }{ d\theta  } =\cfrac { 1 }{ 2 } (\theta +\sin  (\theta )\cos  (\theta ))({ a }^{ 2 }-b^{ 2 })+\theta { b }^{ 2 }+A

When \theta =\pi ,s=0,   so s\cfrac { ds }{ d\theta  }=0  since A is independent of \theta and not infinity (infinity is not a constant).

\therefore  \cfrac { 1 }{ 2 } \pi ({ a }^{ 2 }-b^{ 2 })+\pi { b }^{ 2 }+A=0

A=-\cfrac { 1 }{ 2 } \pi ({ a }^{ 2 }+b^{ 2 }),    so

\int {s(ds)}=\int {\cfrac { 1 }{ 2 } (\theta +\sin  (\theta )\cos  (\theta ))({ a }^{ 2 }-b^{ 2 })+\theta { b }^{ 2 }-\cfrac { 1 }{ 2 } \pi ({ a }^{ 2 }+b^{ 2 })} { d\theta }

Formulating the definite integral in the positive x direction,

\cfrac { { s }^{ 2 } }{ 2 } =\cfrac { 1 }{ 4 } (\theta ^{ 2 }-{ \cos ^{ 2 }{ \theta  }  })({ a }^{ 2 }-b^{ 2 })+\cfrac { { \theta  }^{ 2 } }{ 2 } { b }^{ 2 }-\cfrac { 1 }{ 2 } \pi ({ a }^{ 2 }+b^{ 2 })\theta |^{ 0 }_{ \pi  }

=-\cfrac { 1 }{ 4 } (\pi ^{ 2 }-{ 1 })({ a }^{ 2 }-b^{ 2 })-\cfrac { { \pi  }^{ 2 } }{ 2 } { b }^{ 2 }+\cfrac { 1 }{ 2 } { \pi  }^{ 2 }({ a }^{ 2 }+b^{ 2 })-\cfrac { 1 }{ 4 } ({ a }^{ 2 }-b^{ 2 })

=-\cfrac { 1 }{ 4 } \pi ^{ 2 }({ a }^{ 2 }+b^{ 2 })+\cfrac { 1 }{ 2 } { \pi  }^{ 2 }({ a }^{ 2 }+b^{ 2 })

=\cfrac { 1 }{ 4 } \pi ^{ 2 }({ a }^{ 2 }+b^{ 2 })

s\quad =\cfrac { \pi  }{ \sqrt { 2 }  } \sqrt { ({ a }^{ 2 }+b^{ 2 }) }

p=2s=2\pi \sqrt { \cfrac { ({ a }^{ 2 }+b^{ 2 }) }{ 2 }  }