Processing math: 100%

Saturday, May 24, 2014

Ellipse 2014

s=x2+y2.θ

(s)2=(x2+y2).(θ)2

(s)2=(x2+b2(1x2a2)).(θ)2

(s)2=(x2(1b2a2)+b2).(θ)2

Consider xa=cos(θ)    and   yb=sin(θ)

Since, sin2(θ)+cos2(θ)=1=x2a2+y2b2,    which is equation of the ellipse.

Substituting x=acos(θ) into the equation for s,

(s)2=(a2cos2θ(1b2a2)+b2).(θ)2

(ds)2=cos2θ(a2b2)+b2.(dθ)2

s(ds)=12(θ+sin(θ)cos(θ))(a2b2)+θb2+A.dθ

sdsdθ=12(θ+sin(θ)cos(θ))(a2b2)+θb2+A

When θ=π,s=0,   so sdsdθ=0  since A is independent of θ and not infinity (infinity is not a constant).

12π(a2b2)+πb2+A=0

A=12π(a2+b2),    so

s(ds)=12(θ+sin(θ)cos(θ))(a2b2)+θb212π(a2+b2)dθ

Formulating the definite integral in the positive x direction,

s22=14(θ2cos2θ)(a2b2)+θ22b212π(a2+b2)θ|0π

=14(π21)(a2b2)π22b2+12π2(a2+b2)14(a2b2)

=14π2(a2+b2)+12π2(a2+b2)

=14π2(a2+b2)

s=π2(a2+b2)

p=2s=2π(a2+b2)2