△s=√x2+y2.△θ
(△s)2=(x2+y2).(△θ)2
(△s)2=(x2+b2(1−x2a2)).(△θ)2
(△s)2=(x2(1−b2a2)+b2).(△θ)2
Consider xa=cos(θ) and yb=sin(θ)
Since, sin2(θ)+cos2(θ)=1=x2a2+y2b2, which is equation of the ellipse.
Substituting x=acos(θ) into the equation for △s,
(△s)2=(a2cos2θ(1−b2a2)+b2).(△θ)2
∬(ds)2=∬cos2θ(a2−b2)+b2.(dθ)2
∫s(ds)=∫12(θ+sin(θ)cos(θ))(a2−b2)+θb2+A.dθ
s22=14(θ2−cos2θ)(a2−b2)+θ22b2+Aθ|π20
s22=14(π2)2(a2−b2)+12(π2)2b2+Aπ2+14(a2−b2)
s2=12(π2)2(a2−b2)+(π2)2b2+12(a2−b2)+Aπ
s2=12(π2)2a2+12(π2)2b2+12(a2−b2)+Aπ
s2=12[(π2)2a2+(π2)2b2+(a2−b2)+2Aπ]
s=1√2√(π2)2a2+(π2)2b2+(a2−b2)+2Aπ
When a = b, s = π2a, and swapping a and b, s should remain the same.
These conditions should solve for A.
When a = b,
s=1√2√(π2)2a2+(π2)2a2+2Aπ
s=π21√2√2a2+2Aπ=π2a
∴2Aπ=0, therefore, A is of the form B(an−bn)
on swapping a and b,
(a2−b2)+2B(an−bn)π=(b2−a2)+2B(bn−an)π
2(a2−b2+2B(an−bn)π)=0
a2−b2+2B(an−bn)π=0
a2+2Bπan−(b2+2Bπbn)=0
For the non-trivial case of a≠b, without loss of generality a>b
a2+2Bπan>(b2+2Bπbn) and so,
a2+2Bπan=0 and b2+2Bπbn=0
2Bπbn=−b2
B=−b2−n2π and
2Bπan=−a2
B=−a2−n2π
This implies n = 2 and B=−12π
∴s=1√2√(π2)2a2+(π2)2b2
s=π2√2√a2+b2
For a full ellipse,
ellipse circumference = 4∗s=2π√a2+b22