Loading [MathJax]/jax/output/CommonHTML/jax.js

Friday, May 23, 2014

Ellipse 1986

s=x2+y2.θ

(s)2=(x2+y2).(θ)2

(s)2=(x2+b2(1x2a2)).(θ)2

(s)2=(x2(1b2a2)+b2).(θ)2

Consider xa=cos(θ)    and   yb=sin(θ)

Since, sin2(θ)+cos2(θ)=1=x2a2+y2b2,    which is equation of the ellipse.

Substituting x=acos(θ) into the equation for s,

(s)2=(a2cos2θ(1b2a2)+b2).(θ)2

(ds)2=cos2θ(a2b2)+b2.(dθ)2

s(ds)=12(θ+sin(θ)cos(θ))(a2b2)+θb2+A.dθ

s22=14(θ2cos2θ)(a2b2)+θ22b2+Aθ|π20

s22=14(π2)2(a2b2)+12(π2)2b2+Aπ2+14(a2b2)

s2=12(π2)2(a2b2)+(π2)2b2+12(a2b2)+Aπ

s2=12(π2)2a2+12(π2)2b2+12(a2b2)+Aπ

 s2=12[(π2)2a2+(π2)2b2+(a2b2)+2Aπ]

s=12(π2)2a2+(π2)2b2+(a2b2)+2Aπ

When a = b,    s = π2a, and swapping a and b,  s should remain the same.
These conditions should solve for A.

When a = b,

s=12(π2)2a2+(π2)2a2+2Aπ

s=π2122a2+2Aπ=π2a

 2Aπ=0,   therefore, A is of the form B(anbn)

on swapping a and b,

(a2b2)+2B(anbn)π=(b2a2)+2B(bnan)π

2(a2b2+2B(anbn)π)=0

a2b2+2B(anbn)π=0

a2+2Bπan(b2+2Bπbn)=0

For the non-trivial case of ab,  without loss of generality a>b

a2+2Bπan>(b2+2Bπbn)   and so,

a2+2Bπan=0    and    b2+2Bπbn=0

2Bπbn=b2

B=b2n2π  and

2Bπan=a2

B=a2n2π

This implies n = 2 and B=12π

s=12(π2)2a2+(π2)2b2

s=π22a2+b2

For a full ellipse,

ellipse circumference = 4s=2πa2+b22