Processing math: 17%

Friday, May 23, 2014

Ellipse 1986

s=x2+y2.θ

(s)2=(x2+y2).(θ)2

(s)2=(x2+b2(1x2a2)).(θ)2

(s)2=(x2(1b2a2)+b2).(θ)2

Consider xa=cos(θ)    and   yb=sin(θ)

Since, sin2(θ)+cos2(θ)=1=x2a2+y2b2,    which is equation of the ellipse.

Substituting x=acos(θ) into the equation for s,

(s)2=(a2cos2θ(1b2a2)+b2).(θ)2



\int {s(ds)}=\int {\cfrac{1}{2}( \theta +\sin( \theta )\cos( \theta ))({ a }^{ 2 }-b^{ 2 })+\theta{ b }^{ 2 }+A }. { d\theta }

 \cfrac{{ s }^{ 2 }}{2}=\cfrac { 1 }{ 4 } (\theta ^{ 2 }-{ \cos ^{ 2 }{ \theta  }  })({ a }^{ 2 }-b^{ 2 })+\cfrac { { \theta  }^{ 2 } }{ 2 } { b }^{ 2 }+A\theta |^{ \cfrac { \pi  }{ 2 }  }_{ 0 }

\cfrac{{ s }^{ 2 } }{ 2 } =\cfrac { 1 }{ 4 } (\cfrac { \pi  }{ 2 } )^{ 2 }({ a }^{ 2 }-b^{ 2 })+\cfrac { 1 }{ 2 } (\cfrac { \pi  }{ 2 } )^{ 2 }{ b }^{ 2 }+A\cfrac { \pi  }{ 2 } +\cfrac { 1 }{ 4 } ({ a }^{ 2 }-b^{ 2 })

{ s }^{ 2 }=\cfrac { 1 }{ 2} (\cfrac { \pi  }{ 2 } )^{ 2 }({ a }^{ 2 }-b^{ 2 })+(\cfrac { \pi  }{ 2 } )^{ 2 }{ b }^{ 2 }+\cfrac { 1 }{ 2 } ({ a }^{ 2 }-b^{ 2 })+A\pi  

  { s }^{ 2 }=\cfrac { 1 }{ 2 } (\cfrac { \pi  }{ 2 } )^{ 2 }{ a }^{ 2 }+\cfrac { 1 }{ 2 } (\cfrac { \pi  }{ 2 } )^2{b}^{ 2 }+\cfrac { 1 }{ 2 } ({ a }^{ 2 }-{b}^{ 2 })+A\pi 

 s^2=\cfrac { 1 }{ 2 } [(\cfrac { \pi  }{ 2 } )^{ 2 }{ a }^{ 2 }+(\cfrac { \pi  }{ 2 } )^2{b}^{ 2 }+({ a }^{ 2 }-b^{ 2 })+2A\pi]

s=\cfrac { 1 }{ \sqrt{2} } \sqrt { (\cfrac { \pi  }{ 2 } )^{ 2 }{ a }^{ 2 }+(\cfrac { \pi  }{ 2 } )^2{b}^{ 2 }+({ a }^{ 2 }-b^{ 2 }) +2A\pi }

When a = b,    s = \cfrac{\pi}{2} a, and swapping a and b,  s should remain the same.
These conditions should solve for A.

When a = b,

s=\cfrac { 1 }{ \sqrt{2} } \sqrt { (\cfrac { \pi  }{ 2 } )^{ 2 }{ a }^{ 2 }+(\cfrac { \pi  }{ 2 } )^2{a}^{ 2 }+2A\pi }

s=\cfrac { \pi  }{ 2 } \cfrac { 1 }{ \sqrt{2} } \sqrt {2{ a }^{ 2 }+2A\pi } =\cfrac{\pi}{2}a

 \therefore 2A\pi  = 0,   therefore, A is of the form B(a^n-b^n)

on swapping a and b,

({ a }^{ 2 }-b^{ 2 }) +2B(a^n-b^n)\pi = ({ b }^{ 2 }-a^{ 2 }) +2B(b^n-a^n)\pi

2({ a }^{ 2 }-b^{ 2 }+2B(a^n-b^n)\pi) = 0

{ a }^{ 2 }-b^{ 2 }+2B(a^{ n }-b^{ n })\pi =0

{ a }^{ 2 }+2B\pi a^{ n }-(b^{ 2 }+2B\pi b^{ n })=0

For the non-trivial case of a \neq b,  without loss of generality a>b

{ a }^{ 2 }+2B\pi a^{ n }>(b^{ 2 }+2B\pi b^{ n })   and so,

{ a }^{ 2 }+2B\pi a^{ n }=0    and    b^{ 2 }+2B\pi b^{ n }=0

2B\pi b^{ n }=-{ b }^{ 2 }

B=-\cfrac { { b }^{ 2-n } }{ 2\pi  }  and

2B\pi a^{ n }=-{ a }^{ 2 }

B=-\cfrac { { a }^{ 2-n } }{ 2\pi  }

This implies n = 2 and B=-\cfrac { 1 }{ 2\pi  }

\therefore s=\cfrac { 1 }{ \sqrt{2} } \sqrt { (\cfrac { \pi  }{ 2 } )^{ 2 }{ a }^{ 2 }+(\cfrac { \pi  }{ 2 } )^2{b}^{ 2 }}

s=\cfrac { \pi  }{ 2 \sqrt{2} } \sqrt { { a }^{ 2 }+{b}^{ 2 }}

For a full ellipse,

ellipse circumference = 4*s= 2\pi  \sqrt { \cfrac{{ a }^{ 2 }+{b}^{ 2 }}{2}}