△s=√x2+y2.△θ
(△s)2=(x2+y2).(△θ)2
(△s)2=(x2+b2(1−x2a2)).(△θ)2
(△s)2=(x2(1−b2a2)+b2).(△θ)2
Consider xa=cos(θ) and yb=sin(θ)
Since, sin2(θ)+cos2(θ)=1=x2a2+y2b2, which is equation of the ellipse.
Substituting x=acos(θ) into the equation for △s,
(△s)2=(a2cos2θ(1−b2a2)+b2).(△θ)2
∬
\int {s(ds)}=\int {\cfrac{1}{2}( \theta +\sin( \theta )\cos( \theta ))({ a }^{ 2 }-b^{ 2 })+\theta{ b }^{ 2 }+A }. { d\theta }
\cfrac{{ s }^{ 2 }}{2}=\cfrac { 1 }{ 4 } (\theta ^{ 2 }-{ \cos ^{ 2 }{ \theta } })({ a }^{ 2 }-b^{ 2 })+\cfrac { { \theta }^{ 2 } }{ 2 } { b }^{ 2 }+A\theta |^{ \cfrac { \pi }{ 2 } }_{ 0 }
\cfrac{{ s }^{ 2 } }{ 2 } =\cfrac { 1 }{ 4 } (\cfrac { \pi }{ 2 } )^{ 2 }({ a }^{ 2 }-b^{ 2 })+\cfrac { 1 }{ 2 } (\cfrac { \pi }{ 2 } )^{ 2 }{ b }^{ 2 }+A\cfrac { \pi }{ 2 } +\cfrac { 1 }{ 4 } ({ a }^{ 2 }-b^{ 2 })
{ s }^{ 2 }=\cfrac { 1 }{ 2} (\cfrac { \pi }{ 2 } )^{ 2 }({ a }^{ 2 }-b^{ 2 })+(\cfrac { \pi }{ 2 } )^{ 2 }{ b }^{ 2 }+\cfrac { 1 }{ 2 } ({ a }^{ 2 }-b^{ 2 })+A\pi
{ s }^{ 2 }=\cfrac { 1 }{ 2 } (\cfrac { \pi }{ 2 } )^{ 2 }{ a }^{ 2 }+\cfrac { 1 }{ 2 } (\cfrac { \pi }{ 2 } )^2{b}^{ 2 }+\cfrac { 1 }{ 2 } ({ a }^{ 2 }-{b}^{ 2 })+A\pi
s^2=\cfrac { 1 }{ 2 } [(\cfrac { \pi }{ 2 } )^{ 2 }{ a }^{ 2 }+(\cfrac { \pi }{ 2 } )^2{b}^{ 2 }+({ a }^{ 2 }-b^{ 2 })+2A\pi]
s=\cfrac { 1 }{ \sqrt{2} } \sqrt { (\cfrac { \pi }{ 2 } )^{ 2 }{ a }^{ 2 }+(\cfrac { \pi }{ 2 } )^2{b}^{ 2 }+({ a }^{ 2 }-b^{ 2 }) +2A\pi }
When a = b, s = \cfrac{\pi}{2} a, and swapping a and b, s should remain the same.
These conditions should solve for A.
When a = b,
s=\cfrac { 1 }{ \sqrt{2} } \sqrt { (\cfrac { \pi }{ 2 } )^{ 2 }{ a }^{ 2 }+(\cfrac { \pi }{ 2 } )^2{a}^{ 2 }+2A\pi }
s=\cfrac { \pi }{ 2 } \cfrac { 1 }{ \sqrt{2} } \sqrt {2{ a }^{ 2 }+2A\pi } =\cfrac{\pi}{2}a
\therefore 2A\pi = 0, therefore, A is of the form B(a^n-b^n)
on swapping a and b,
({ a }^{ 2 }-b^{ 2 }) +2B(a^n-b^n)\pi = ({ b }^{ 2 }-a^{ 2 }) +2B(b^n-a^n)\pi
2({ a }^{ 2 }-b^{ 2 }+2B(a^n-b^n)\pi) = 0
{ a }^{ 2 }-b^{ 2 }+2B(a^{ n }-b^{ n })\pi =0
{ a }^{ 2 }+2B\pi a^{ n }-(b^{ 2 }+2B\pi b^{ n })=0
For the non-trivial case of a \neq b, without loss of generality a>b
{ a }^{ 2 }+2B\pi a^{ n }>(b^{ 2 }+2B\pi b^{ n }) and so,
{ a }^{ 2 }+2B\pi a^{ n }=0 and b^{ 2 }+2B\pi b^{ n }=0
2B\pi b^{ n }=-{ b }^{ 2 }
B=-\cfrac { { b }^{ 2-n } }{ 2\pi } and
2B\pi a^{ n }=-{ a }^{ 2 }
B=-\cfrac { { a }^{ 2-n } }{ 2\pi }
This implies n = 2 and B=-\cfrac { 1 }{ 2\pi }
\therefore s=\cfrac { 1 }{ \sqrt{2} } \sqrt { (\cfrac { \pi }{ 2 } )^{ 2 }{ a }^{ 2 }+(\cfrac { \pi }{ 2 } )^2{b}^{ 2 }}
s=\cfrac { \pi }{ 2 \sqrt{2} } \sqrt { { a }^{ 2 }+{b}^{ 2 }}
For a full ellipse,
ellipse circumference = 4*s= 2\pi \sqrt { \cfrac{{ a }^{ 2 }+{b}^{ 2 }}{2}}