Friday, June 10, 2016

\(\psi\) Is Attractive

From the post "Not Exponential, But Hyperbolic And Positive Gravity!" dated 21 Nov 2014,

\(F=e^{ i3\pi /4 }D\sqrt { 2{ mc^{ 2 } } } .tanh\left( \cfrac { { D } }{ \sqrt { 2{ mc^{ 2 } } }  }( x-x_o).e^{ i\pi /4 } \right) \)

If \(G=D.e^{ i\pi /4 }\) is real then

\(F=e^{i\pi/2}\sqrt { 2{ mc^{ 2 } } }\,G.tanh\left( \cfrac { G }{ \sqrt { 2{ mc^{ 2 } } }  } (x-x_z) \right) \)

\(F=i\sqrt { 2{ mc^{ 2 } } }\,G.tanh\left( \cfrac { G }{ \sqrt { 2{ mc^{ 2 } } }  } (x-x_z) \right) \)

If however we allow the augment to the function \(tanh(x)\) to be complex, and interpret \(e^{ i\pi /4 }\) as rotation about the origin anti-clockwise by \(\pi/4\) from \( e^{ i\pi /4 } \) , and then a further rotation by \(3\pi/4\) from \( e^{ i3\pi /4 } \), \(F\) is rotated by \(\pi\) about the origin in total.

\(F=-\sqrt { 2{ mc^{ 2 } } }\,G.tanh\left( \cfrac { G }{ \sqrt { 2{ mc^{ 2 } } }  } (x-x_z) \right) \)

\(F\) is then along the negative \(x\) direction, towards the center of the particle which is consistent with the expression

\(4\pi { \cfrac { \dot { x } ^3 }{ a_{ \psi  } } m }=-q\)

that a negative charge is normally associated with particle.

But, this interpretation of \(e^{ i\pi /4 }\) in the augment of \(tanh(x)\) is odd because \(tanh(x)\) does not accept complex augments.  In this way, the modulus of a complex augment serves as the real input to the function and the argument of the complex augment rotates the x axis of the graph of the function about the origin anti-clockwise.


If this is true,

\(F=-\sqrt { 2{ mc^{ 2 } } }\,G.tanh\left( \cfrac { G }{ \sqrt { 2{ mc^{ 2 } } }  } (x-x_z) \right) \)

without \(i\).  Force density \(F\), points towards the center of the particle, along the negative \(x\) direction.

And we have a new class of real functions with complex augments.

Good night.

Note: This suggests \(e^{ia}\) has immunity, that

\(F=e^{ i3\pi /4 }D\sqrt { 2{ mc^{ 2 } } } .tanh\left( \cfrac { { D } }{ \sqrt { 2{ mc^{ 2 } } }  }( x-x_o).e^{ i\pi /4 } \right) \)

\(F=e^{ i3\pi /4 }.e^{ i\pi /4 } D\sqrt { 2{ mc^{ 2 } } } .tanh\left( \cfrac { { D } }{ \sqrt { 2{ mc^{ 2 } } }  }( x-x_o)\right) \)

\(F=e^{ i\pi } D\sqrt { 2{ mc^{ 2 } } } .tanh\left( \cfrac { { D } }{ \sqrt { 2{ mc^{ 2 } } }  }( x-x_o)\right) \)

\(F=- D\sqrt { 2{ mc^{ 2 } } } .tanh\left( \cfrac { { D } }{ \sqrt { 2{ mc^{ 2 } } }  }( x-x_o)\right) \)

 \(e^{ia}\) passes through a function as a constant coefficient passes through an integral.

Warning, over generalization!!