\(c=\sqrt { \cfrac { 38.5*(32\pi ^{ 4 }-1) }{ 64*3.135009*\pi .ln(cosh(3.135009))tanh(3.135009) } *\left( \cfrac {3.135009}{ 0.7369 } \right) ^{ 3 }}\)
Since,
\(\left( \cfrac { 3.135009 }{ 0.7369 } \right) ^{ 3 }=77\)
\(c=\sqrt { \cfrac { \frac { 77^{ 2 } }{ 2 } *(32\pi ^{ 4 }-1) }{ 64*3.135009*\pi .ln(cosh(3.135009))tanh(3.135009) } } \)
We generalize the above expression,
\(c=n\sqrt { \cfrac {(32\pi ^{ 4 }-1) }{ 128\pi\theta_{\psi}ln(cosh(\theta_{\psi}))tanh(\theta_{\psi}) } } \)
\(n.a^3_{\psi\,c}=a^3_{\psi}\)
as \(n\) basic particles reform into one particle, a sphere of radius \(a_{\psi}\).
\(a_{\psi}=\sqrt [ 3]{n }.a_{\psi\,c} \)
and
\(\theta_{\psi}=\cfrac{G}{\sqrt{2mc^2}}a_{\psi}=\cfrac{a_{\psi\,c} G}{\sqrt{2mc^2}}\sqrt [ 3]{n }\)
\(G\) is not the gravitational constant, it is still unknown.
We have,
\(\left(\cfrac{c}{n}\right)^2=\cfrac {(32\pi ^{ 4 }-1) }{ 128\pi\theta_{\psi}ln(cosh(\theta_{\psi}))tanh(\theta_{\psi}) }\)
where \(\theta_{\psi}\) is proportional to \(\sqrt [ 3]{n }\)
A plot of xln(cosh(x))tanh(x) gives,
and a plot of 1/(xln(cosh(x))tanh(x)) and 3/x^2 gives,
Both curves coincide only at \(x=1\). In the expression for \(c\), \(c\) is not a constant but changes with \(n\). It is an expression for \(c\) that is valid only at the point \(n=77\) with the assumption that,
\(\theta_{\psi}=\cfrac{G}{\sqrt{2mc^2}}a_{\psi}\approx\pi\)
which delimits the particle size to be less than or equal to,
\(\theta_{\psi}=\cfrac{G}{\sqrt{2mc^2}}a_{\psi}=\pi\)
\(\theta_{\psi}=\cfrac{G}{\sqrt{2mc^2}}a_{\psi}=\pi\)
\(n=77\) is not a more fundamental constant, changing \(n\) does not change \(c\) in reality, but changes the magnitude of the charge.
And light speed has a pulse...