Loading [MathJax]/jax/output/CommonHTML/jax.js

Wednesday, August 27, 2014

Young And On Heat

Consider Young's Modulus in the case of a sphere,  Es

FL=EsAoLoΔL

when  Lo=1  and  Ao=4π(1)2

FL=4πEsΔL=FT=3ρD.(ds)T.1α

for the case of such a sphere under high temperature.  If we have,

Es=3E

where  E is the linear Young's Modulus and  3  the 3D constant, then

4πEΔL=ρD.(ds)T.1α

We have,

D.(ds)T=4πEαρΔL  --- (*)

where  ΔL  is the change in radius of the sphere,  ρ is the density of the element,  α
 is the linear thermal coefficient, and  E  the Young Modulus.

If both  D  and  (ds)T  are instead independent of the specific element, then the last formula provides a simple way of finding,

D.(ds)T    in general.

(ds)T  is a function in  T  and  ΔL changes with  T.  In which case  D  can be found by plotting  f(T)  vs  ΔL.  Where  f(T)  is a function in  T  and  f(T)  vs  ΔL  is a line through the origin with gradient,

gradient=4πEαρD

It should be noted that expression (*) is within the frame work of a solid lattice, an array of atoms in 3D.  The limiting case of an infinitely sparse lattice will then approximate the situation of free space.

Have a nice day.