Sunday, August 3, 2014

What Thermal Gravity? Too Hot To Handle...

From the post "Heat Wave"

\(\cfrac { \partial T }{ \partial t } =\cfrac { x }{ g_{ T } } \cfrac { \partial^{ 3 }T }{ \partial^{ 3 }t } \)

\( \int  \partial T=\cfrac { x }{ g_{ T } } \int { \cfrac { \partial^{ 3 }T }{ \partial^{ 3 }t }  } \partial t\)

\( T(t)T(x)=\cfrac { x }{ g_{ T } } (\cfrac { \partial^{ 2 }T }{ \partial t^{ 2 } } +C(x) +C)\) ---(*)

where \(C(x)\) is a function only in \(x\) and \(C\) is a numerical constant.

If we insist that \(T\) propagate as a wave at velocity \(v\),

\(\cfrac { \partial^{ 2 }T }{ \partial t^{ 2 } }={ v }^{ 2 }\cfrac { \partial^{ 2 }T }{ \partial x^{ 2 } }\)

Substitute the above into (*)

\( T(t)T(x)=\cfrac { x }{ g_{ T } } ({ v }^{ 2 }\cfrac {\partial^{ 2 }T }{ \partial x^{ 2 } } +C(x) +C)\)

when we let \(T=T(t)T(x)\).

If  \(T(t)\) has no constant term,

\(C(x)=C=0\),

\( T(t)T(x) ={ v }^{ 2 }\cfrac{ x } { g_{ T } }T(t)\cfrac { d^{ 2 }T(x) }{ d x^{ 2 } } \)

\( g_{ T } =v^2\cfrac{x}{T(x)}\cfrac { d^{ 2 }T(x) }{ d x^{ 2 } } \)

The biggest assumption here is that \(T\) propagate as a wave at velocity \(v\).  We know that \(g_T\rightarrow 0\)   as  \(x\rightarrow \infty\).    Thermal gravity is positive, and points away from higher temperature.  It is in the same direction as \(x\).  \(T(x)\) as a product with \(T(t)\) satisfies the wave equation.  Just on the boundary of the hot spot, \(g_T\) is maximum.   Thereafter,  \(g_T\)   decreases monotonously.

Still looking for \(g_T(x)\)...

Because the immediate answer is,

 \( T(x)={ e }^{ -Ax }\)

where

\( A=\cfrac { 1 }{ v }\sqrt{\cfrac { { g }_{ T } }{ L}} \)

which leads right back to

\( g_{ T } =v^2x(\cfrac { 1 }{ v }\sqrt{\cfrac { { g }_{ T } }{ L}})^2  \)

\( g_{ T } = x{\cfrac { { g }_{ T } }{ L}} \)

\(x=L\)

which is undeniable.  Very Hot...