Saturday, August 9, 2014

Levitating Hot Body

Is it possible that a hot body levitate,  since the gravity it produces is opposite to that of Earth's.

For this construct to lift,

\(Mg_T-(M+m)g>0\)

We assume a linear temperature profile,

\(T=T_{max}(1-\cfrac{x}{d})\)

and a log squared space density profile,

\({ d }_{ s }(T)=\cfrac { ({ d }_{ T_{ max } }-{ d }_{ n }) }{ ln(\cfrac { 1 }{ T_{ max }^{ 2 } } ) } ln(\cfrac { 1 }{ T^{ 2 }(x) } )+{ d }_{ n }\)

\({ d }_{ s }(T)=\cfrac { ({ d }_{ T_{ max } }-{ d }_{ n }) }{ ln(\cfrac { 1 }{ T_{ max }^{ 2 } } ) } ln(\cfrac { 1 }{ T^2_{max}(1-\cfrac{x}{d})^2 } )+{ d }_{ n }\)

\({ d }_{ s }(T)=\cfrac { ({ d }_{ T_{ max } }-{ d }_{ n }) }{ ln(T_{ max }^{ 2 }) } ln(T^{ 2 }_{ max }(1-\cfrac { x }{ d } )^{ 2 })+{ d }_{ n }\)

\( { d }_{ s }(T)=\cfrac { ({ d }_{ T_{ max } }-{ d }_{ n }) }{ ln(T_{ max }^{ 2 }) } (ln(T^{ 2 }_{ max })+ln((1-\cfrac { x }{ d } )^{ 2 }))+{ d }_{ n }\} \)

\( \cfrac { d(d_{ s }(T)) }{ dx } =\cfrac { ({ d }_{ T_{ max } }-{ d }_{ n }) }{ ln(T_{ max }^{ 2 }) } (-\cfrac { 1 }{ (1-\cfrac { x }{ d } )^{ 2 } } \cfrac { 2 }{ d } (1-\cfrac { x }{ d } ))\)

\( \cfrac { d(d_{ s }(T)) }{ dx } =\cfrac { ({ d }_{ T_{ max } }-{ d }_{ n }) }{ ln(T_{ max }^{ 2 }) } (-\cfrac { 2 }{ (d-x ) } )\)

And we have,

\(g_{ T }=\cfrac { { G }_{ T } }{ { x }_{ o }({ d }_{ n }-{ d }_{ T_{ max } }) } \cfrac { ({ d }_{ T_{ max } }-{ d }_{ n }) }{ ln(T_{ max }^{ 2 }) } (-\cfrac { 2 }{ (d-x) } )\)

\( g_{ T }=\cfrac { 2{ G }_{ T } }{ { x }_{ o }ln(T_{ max }^{ 2 }) }\cfrac { 1}{ (d-x) }\)

Therefore,  at  \(x=0\),

\(M\cfrac { 2{ G }_{ T } }{ { x }_{ o }ln(T_{ max }^{ 2 }) } \cfrac { 1}{ d }-(M+m)g>0\)

From this equation we see that small  \(x_o\)  (radius of body)  and small  \(d\)  provide for greater lift.  We shall now optimize  \(T_{max}\)  for greater lift.

It seem odd that  \(g_T\)  should be inversely proportional to  \(T_{max}\).  In free space where  \(T_{max}\)  is allowed to fall over a  distance  \(x=L\)  to reach  \(T=0\)  increasing  \(T_{max}\)  increases  \(L\)  but  \(d_s\)  cannot fall below zero.  \(\Delta d_s= d_n\)  remains fixed,  as such,

\(\cfrac{d(d_s(x))}{dx}=\cfrac{d_n}{L}\)    when we use a linear approximation, decreases with increasing  \(T_{max}\).  And so,  \(g_T\)  decreases.

We can fix  \(L\)  by placing a cold body at distance  \(d\)  but still  \(\Delta d_s= d_n\)  remains the same.

So in practice  \(T_{max}\)  should be increased until  \(g_T\)  and so lift is at a maximum and then no further.  At this point  \(\Delta d_s=d_n\)  and cannot be increased further.