From previous episodes of Amnesia's Dream,
∂T∂t=xgT∂3T∂3t
and so,
dT(t)dtT(x)=xgT∂∂t(∂2T∂t2)
From the wave equation,
dT(t)dtT(x)=xgT∂∂t(v2∂2T∂x2)
dT(t)dtT(x)=xgT{2vdvdt∂2T∂x2+v2∂2∂x2(∂T∂t)}
If we assume that acceleration is wholly due to gT,
dvdt=gT
dT(t)dtT(x)=xgT{2vgTT(t)d2T(x)dx2+v2∂2∂x2(T(x)dT(t)dt)}
dT(t)dtT(x)=xgT{2vgTT(t)d2T(x)dx2+v2dT(t)dtd2T(x)dx2}
dT(t)dtT(x)=2xvT(t)d2T(x)dx2+dT(t)dtv2xgTd2T(x)dx2
Compare this with,
T(x)=v2xgTd2T(x)dx2
this suggests,
2xvT(t)d2T(x)dx2=2xv∂2T∂x2=2xv∂2T∂t2=0
which might mean,
∂2T∂x2=∂2T∂t2=0
then there is no wave in the radial direction, not of the form T=T(t)T(x). Just attenuation.