Thursday, August 7, 2014

Possibilities, Possibilities, And God Created More Possibilities

\(T(x)=\cfrac{A}{\sqrt{x}}\) --- (1)

From the post "Gravity Exponential Form",

\(g=\cfrac{{G}_{o}}{{r}_{e}({d}_{e}-{d}_{n})}.\cfrac{d({d}_{s}(x))}{dx}\),

this expression considered space density and conservation of energy,  there is a discrepancy where

\({v}^{2}_{t}+\frac{1}{2}{v}^{2}_{s}={c}^{2}\)  instead of  \({v}^{2}_{t}+ {v}^{2}_{s}={c}^{2}\)

The extra factor of  \(\frac{1}{2}\)  in front of   \(v^2_s\)  is eventually absorbed into  \(G_o\).

We will here consider

\({v}^{2}_{t}+\frac{1}{2}{v}^{2}_{rg}={c}^{2}\)

where  \(v^2_{rg}\)  is deemed to be thermal and is responsible for manifesting thermal gravity as time speed  \(v_t\)  slows in denser space.  (\(v^2_{rc}\)  was used in charges that annihilate along the charge time dimension.  The charges collided with  opposite velocities along the charge time dimension (matter/antimatter).  The loss of K.E was the gain in rotational K.E,  \(v^2_{rc}\), which manifest itself as  \(T\) temperature.)

We have a similar expression for thermal gravity,  \(g_T\)

\(g_T=\cfrac{{G}_{T}}{{x}_{o}({d}_{n}-{d}_{T_{max}})}.\cfrac{d({d}_{s}(x))}{dx}\)

where  \(G_{T}\)  is a constant,  \(x_o\)  is the radius of the hot spot.

\(T=T_{max}\),  where \(x=x_o\)  on the boundary of the hot spot.

\(d_{T_{max}}\)  is the density of space at temperature  \(T_{max}\)  and  \(d_n\)  is the normal space density.  The term,

\({d}_{n}-{d}_{T_{max}}>0\)

because temperature thins out space and the resulting thermal gravity is positive in the direction of  \(x\).  If we assume that  \(d_s(x)\)  is linear in  \(T\).

Space Density, ds vs Temperature, T

\({d}_{s}(T)=\cfrac{({d}_{T_{max}}-{d}_{n})}{T_{max}}.T+d_n\)

Space density  varies with  \(T\),  temperature,  given the temperature profile  (1).

\({d}_{s}(x)=\cfrac{({d}_{T_{max}}-{d}_{n})}{T_{max}}.\cfrac{A}{\sqrt{x}}+d_n\)

\(\cfrac{d({d}_{s}(x))}{dx}=-A\cfrac{({d}_{T_{max}}-{d}_{n})}{2T_{max}}.\cfrac{1}{({x})^{{3}/{2}}}\)

And we have,

\(g_T=\cfrac{{G}_{T}}{{x}_{o}({d}_{n}-{d}_{T_{max}})}(-A\cfrac{({d}_{T_{max}}-{d}_{n})}{2T_{max}}.\cfrac{1}{({x})^{3/2}})\)

\(g_T={{G}_{To}}\cfrac{1}{{x}^{3/2}}\)

where  \(G_{To}\)  replaces \(\cfrac{A{G}_{T}}{2{x}_{o}{T_{max}}}\)

In fact, for \(n=1,2,3...\)

\({d}_{s}(T)=\cfrac{{d}_{T_{max}}-{d}_{n}}{T^n_{max}}.T^n+d_n\)

\(g_T=\cfrac{nA^n{G}_{T}}{2{x}_{o}{T^n_{max}}}\cfrac{1}{\sqrt[n+2]{x}}\)

The following is a set of curves showing the dependence of  Space Density,  \(d_s\)  on  Temperature  \(T^n\).

Space Density vs Temperature

It also show  \(g_T\)  for the case of linear dependence of  \(d_s\)  on  \(T\).   The graph below shows  \(g_T\)  in the first few  \(n\)  and  \(g=e^{-x}\).

gT(x) field equation
To obtain the answer calculated previously where  \(g_T=\cfrac{A}{x}\).  We have to consider,

\({ d }_{ s }(T)=\cfrac { ({ d }_{ T_{ max } }-{ d }_{ n }) }{ ln(\cfrac { 1 }{ T_{ max }^{ 2 } } ) } ln(\cfrac { 1 }{ T^{ 2 }(x) } )+{ d }_{ n }\)

then substitute (1) in,

\({ d }_{ s }(T)=\cfrac { ({ d }_{ T_{ max } }-{ d }_{ n }) }{ -ln({ T_{ max }^{ 2 } } ) }( ln(x )-ln(A^2))+{ d }_{ n }\)

\(\cfrac{d({d}_{s}(x))}{dx}=-\cfrac{({d}_{T_{max}}-{d}_{n})}{   ln( { T_{ max }^{ 2 } } ) }.\cfrac{1}{x}\)

And we have,

\(g_{ T }=\cfrac { { G }_{ T } }{ { x }_{ o }({ d }_{ n }-{ d }_{ T_{ max } }) } (-\cfrac { ({ d }_{ T_{ max } }-{ d }_{ n }) }{ ln({ T_{ max }^{ 2 } }) } ).\cfrac { 1 }{ x }  \)

\(g_T={{G}_{To}}\cfrac{1}{{x}}\)

where  \(G_{To}\)  replaces \(\cfrac{{G}_{T}}{{x}_{o}{ ln({ T_{ max }^{ 2 } }) }}\)

So we have,  \(g_T=\cfrac{G_{To}}{\sqrt[n+2]{x}}\),  for  \(n=1,2,3..\)  or  \(g_T={{G}_{To}}\cfrac{1}{{x}}\)

(Note:  The  \(G_{To}\)s  are to be determined respectively.)

Each of these suggests a unique variation of space density,  \(d_s(x)\),  with temperature,  \(T\).  Which one is the right one?  The only way to determine which is correct is to measure  \(g_T\)  or  \(g_T-g\)  and obtain its variation with  \(T\)  experimentally.