Loading [MathJax]/jax/output/CommonHTML/jax.js

Thursday, August 7, 2014

Possibilities, Possibilities, And God Created More Possibilities

T(x)=Ax --- (1)

From the post "Gravity Exponential Form",

g=Gore(dedn).d(ds(x))dx,

this expression considered space density and conservation of energy,  there is a discrepancy where

v2t+12v2s=c2  instead of  v2t+v2s=c2

The extra factor of  12  in front of   v2s  is eventually absorbed into  Go.

We will here consider

v2t+12v2rg=c2

where  v2rg  is deemed to be thermal and is responsible for manifesting thermal gravity as time speed  vt  slows in denser space.  (v2rc  was used in charges that annihilate along the charge time dimension.  The charges collided with  opposite velocities along the charge time dimension (matter/antimatter).  The loss of K.E was the gain in rotational K.E,  v2rc, which manifest itself as  T temperature.)

We have a similar expression for thermal gravity,  gT

gT=GTxo(dndTmax).d(ds(x))dx

where  GT  is a constant,  xo  is the radius of the hot spot.

T=Tmax,  where x=xo  on the boundary of the hot spot.

dTmax  is the density of space at temperature  Tmax  and  dn  is the normal space density.  The term,

dndTmax>0

because temperature thins out space and the resulting thermal gravity is positive in the direction of  x.  If we assume that  ds(x)  is linear in  T.

Space Density, ds vs Temperature, T

ds(T)=(dTmaxdn)Tmax.T+dn

Space density  varies with  T,  temperature,  given the temperature profile  (1).

ds(x)=(dTmaxdn)Tmax.Ax+dn

d(ds(x))dx=A(dTmaxdn)2Tmax.1(x)3/2

And we have,

gT=GTxo(dndTmax)(A(dTmaxdn)2Tmax.1(x)3/2)

gT=GTo1x3/2

where  GTo  replaces AGT2xoTmax

In fact, for n=1,2,3...

ds(T)=dTmaxdnTnmax.Tn+dn

gT=nAnGT2xoTnmax1n+2x

The following is a set of curves showing the dependence of  Space Density,  ds  on  Temperature  Tn.

Space Density vs Temperature

It also show  gT  for the case of linear dependence of  ds  on  T.   The graph below shows  gT  in the first few  n  and  g=ex.

gT(x) field equation
To obtain the answer calculated previously where  gT=Ax.  We have to consider,

ds(T)=(dTmaxdn)ln(1T2max)ln(1T2(x))+dn

then substitute (1) in,

ds(T)=(dTmaxdn)ln(T2max)(ln(x)ln(A2))+dn

d(ds(x))dx=(dTmaxdn)ln(T2max).1x

And we have,

gT=GTxo(dndTmax)((dTmaxdn)ln(T2max)).1x

gT=GTo1x

where  GTo  replaces GTxoln(T2max)

So we have,  gT=GTon+2x,  for  n=1,2,3..  or  gT=GTo1x

(Note:  The  GTos  are to be determined respectively.)

Each of these suggests a unique variation of space density,  ds(x),  with temperature,  T.  Which one is the right one?  The only way to determine which is correct is to measure  gT  or  gTg  and obtain its variation with  T  experimentally.