If the field effects such as gravity and charge, where, spreaded out in a region of space, a body experience acceleration without a contact force, is due only to time variation expressed through the conservation of energy equation across the time and space dimensions,
\(qv^2_{t} + \frac{1}{2}qv^2_c=\frac{1}{2}qc^2=constant\)
\(2v^2_{t} + v^2_c=c^2\)
The factor of two before time velocity, \(v_t\), is due to the fact that the kinetic energy along the time dimension at speed is not
\(E=\frac{1}{2}mv^2_t\) but
\(E=mv^2_t\)
Differentiating with respect to \(x\),
\( 4v_{ t }\cfrac { dv_{ t } }{ dx } +2v_{ c }\cfrac { dv_{ c } }{ dx } =0\)
\(2 v_{ t }\cfrac { dv_{ t } }{ dx } +v_{ c }\cfrac { dv_{ c } }{ dt } \cfrac { dt }{ dx } =0\)
\(2 v_{ t }\cfrac { dv_{ t } }{ dx } +a_{ c }=0\) ----(1)
\(2v_{ t }\cfrac { dv_{ t } }{ dt } \cfrac { dt }{ dx } +a_{ c }=0,\)
\(2\cfrac { v_{ t } }{ v_{ c } } \cfrac { dv_{ t } }{ dt } +a_{ c }=0\)
Differentiating (1) again with respect to \(x\),
\( 2(\cfrac { dv_{ t } }{ dx } )^{ 2 }+2v_{ t }\cfrac { d^{ 2 }v_{ t } }{ dx^{ 2 } } +\cfrac { da_{ c } }{ dx } =0\)
\( -\cfrac { da_{ c } }{ dx } =2(\cfrac { dv_{ t } }{ dx } )^{ 2 }+2v_{ t }\cfrac { d^{ 2 }v_{ t } }{ dx^{ 2 } } \)
From the post "Calculus We Have A Problem",
\( v_{ t }\cfrac { d^{ 2 }v_{ t } }{ dx^{ 2 } } =\cfrac { v_t }{ v^2_c }\cfrac { d^{ 2 }v_{ t } }{ dt^{ 2 } } +\cfrac { v_t }{ a_c }\cfrac { dv_{ t } }{ dt } \)
So,
\( -\cfrac { da_{ c } }{ dx } =2(\cfrac { dv_{ t } }{ dt } \cfrac { dt }{ dx } )^{ 2 }+2\cfrac { v_t }{ v^2_c }\cfrac { d^{ 2 }v_{ t } }{ dt^{ 2 } } +2\cfrac { v_t }{ a_c }\cfrac { dv_{ t } }{ dt } \)
\( -\cfrac { da_{ c } }{ dx } =2(\cfrac { 1 }{ v_{ c } } )^{ 2 }(\cfrac { dv_{ t } }{ dt } )^{ 2 }+2\cfrac { v_t }{ v^2_c }\cfrac { d^{ 2 }v_{ t } }{ dt^{ 2 } } +2\cfrac { v_t }{ a_c }\cfrac { dv_{ t } }{ dt } \) ----(*)
Differentiating the conservation of energy equation with respect to time \(t\) twice,
\( 4v_{ t }\cfrac { dv_{ t } }{ dt } +2v_{ c }\cfrac { dv_{ c } }{ dt } =0,\)
\(2v_{ t }\cfrac { dv_{ t } }{ dt } +v_{ c }.a_{ c }=0\)
\( 2(\cfrac { dv_{ t } }{ dt } )^{ 2 }+2v_{ t }\cfrac { d^{ 2 }v_{ t } }{ dt^{ 2 } } +a^{ 2 }_{ c }+v_{ c }\cfrac { da_{ c } }{ dt } =0\)
\( 2\cfrac { v_{ t } }{ v^2_{ c } } \cfrac { d^{ 2 }v_{ t } }{ dt^{ 2 } } +\cfrac { 2 }{ v^2_{ c } } (\cfrac { dv_{ t } }{ dt } )^{ 2 }=-\cfrac{a^2_{ c }}{v^2_c}-\cfrac { 1}{ v_{ c } } \cfrac { da_{ c } }{ dt } \)
Substitute into (*)
\( -\cfrac { da_{ c } }{ dx } =2\cfrac { v_t }{ a_c }\cfrac { dv_{ t } }{ dt }-\cfrac{a_{ c }}{v^2_c}-\cfrac { 1}{ v_{ c } } \cfrac { da_{ c } }{ dt } \)
\(-\cfrac { da_{ c } }{ dx } =-\cfrac { da_{ c } }{dt}\cfrac{ dt }{dx}=-\cfrac{1}{v_c}\cfrac { da_{ c } }{dt} \)
\(2\cfrac { v_t }{ a_c }\cfrac { dv_{ t } }{ dt }=\cfrac{a^2_{ c }}{v^2_c}\)
since, \({v}^2_{c}={c}^{2}-{v}^{2}_{t}\)
\(({c}^{2}-{v}^{2}_{t})2{ v_t }\cfrac { dv_{ t } }{ dt }=a^3_{ c }\)
\(({c}^{2}-{v}^{2}_{t})\cfrac { d(v^2_{ t }) }{ dt }=a^3_{ c }\)
\(({c}^{2}-{v}^{2}_{t})\cfrac { d(v^2_{ t }) }{ dx }\cfrac{dx}{dt}=a^3_{ c }\)
\(({c}^{2}-{v}^{2}_{t})v_c\cfrac { d(v^2_{ t }) }{ dx }=a^3_{ c }\)
\(({c}^{2}-{v}^{2}_{t})\sqrt{{c}^{2}-{v}^{2}_{t}}\cfrac { d(v^2_{ t }) }{ dx }=a^3_{ c }\)
but, from (1)
\(2v_t\cfrac{d{v}_{t}}{dx}=-{a}_{c}\)
\(({c}^{2}-{v}^{2}_{t})^{\cfrac{3}{2}}(-a_c)=a^3_{ c }\)
\(a^2_c=-({c}^{2}-{v}^{2}_{t})^{\cfrac{3}{2}}\)
\(a^2_c=-c^3(1-{\gamma}^{2})^{\cfrac{3}{2}}\)
\(a_c=ic^\cfrac{3}{2}(1-{\gamma}^{2})^{\cfrac{3}{4}}\)
which is true because \(a_c\) is perpendicular to \(v_t\).
\(|a_{c max}|=c^\cfrac{3}{2}\) when \(\gamma=0\)
\(a_c=ic^\cfrac{3}{2}(1-{\gamma}^{2})^{\cfrac{3}{4}}\)
which is true because \(a_c\) is perpendicular to \(v_t\).
\(|a_{c max}|=c^\cfrac{3}{2}\) when \(\gamma=0\)
Maximum \(a_c\) not \(c^2\) but \(c^\cfrac{3}{2}\).