Saturday, August 9, 2014

Space Density Under Temperature

From the post "Possibilities, Possibilities, And God Created More Possibilities",

\({ d }_{ s }(T)=\cfrac { ({ d }_{ T_{ max } }-{ d }_{ n }) }{ -ln({ T_{ max }^{ 2 } } ) }( ln(x )-ln(A^2))+{ d }_{ n }\)

\({ d }_{ s }(T)=A.ln(x )+B\)

A plot of log( x ) + 1 is shown below


When  \(T=T_{max}\)  space density is  \(d_{Tmax}\)  when  \(T=0\),  \(d_s=d_n\)  at normal space density.  The derivative of  space density,

\(\cfrac{d(d_s(x))}{dx}\)  gives thermal gravity.

This is assuming that  \(g_T=\cfrac{G_{To}}{x}\).