If of steel the annealing temperature is \(T_{boom}\) of the dopant \(Fe_3C\) then other additives with their corresponding \(T_{p}\) as annealing temperature may result in steel of varying desirable properties.
For example, silicon \(Si\), as an additive. \(Fe_3Si\), \(Z=3*26+14\), density \(7220\,kgm^{-3}\), molar mass \(195.6205 g\,mol^{-1}\),
\(v_{boom}=3.4354*\cfrac{density}{Z}\)
\(v_{boom}=3.4354*\cfrac{7220}{3*26+14}=269.60\,ms^{-1}\)
And,
\(T_{boom}=v^2_{rms}*\cfrac{Molar\,mass}{3*8.3144}\)
\(T_{boom}=269.60^2*\cfrac{195.6205*10^{-3}}{3*8.3144}=570.03\,K\) or \(296.89\,^oC\)
and also,
\(T_{p}=v^2_{rms}*\cfrac{Molar\,mass}{2*8.3144}\)
\(T_{p}=269.60^2*\cfrac{195.6205*10^{-3}}{2*8.3144}=855.05\,K\) or \(581.90\,^oC\)
If steel uses \(Si\) as an additive, does heat treatment at \(581.90\,^oC\) causes the material to strengthen as in annealing of steel?