Mercury, \(Hg\), \(Z=80\), density \(13.534\,gcm^{-3}\), molar mass \(200.592\,gmol^{-1}\)
\(v_{boom}=3.4354*\cfrac{density}{Z}\)
\(v_{boom}=3.4354*\cfrac{13534}{80}=581.18\)
and
\(T_{boom}=v^2_{rms}*\cfrac{Molar\,mass}{3*8.3144}\)
\(T_{boom}=581.18^2*\cfrac{200.592*10^{-3}}{3*8.3144}=2716.37\,K\) or \(2443.22\,^oC\)
also,
\(T_{p}=v^2_{rms}*\cfrac{Molar\,mass}{2*8.3144}\)
\(T_{p}=581.18^2*\cfrac{200.592*10^{-3}}{2*8.3144}=4074.55\,K\) or \(3801.40\,^oC\)
Other than,
\(c+v_{boom}=c+581.18\)
there's nothing new here. How far back in time does a mere \(581.18\,ms^{-1}\) send us?
It is possible to stir up \(v_{boom}\) as in a vortex; since \(v_{boom}\) is the target velocity, a cylindrical drum will work better.