Wednesday, January 3, 2018

Mercury And Dark Light

Mercury, \(Hg\), \(Z=80\), density \(13.534\,gcm^{-3}\), molar mass \(200.592\,gmol^{-1}\)

\(v_{boom}=3.4354*\cfrac{density}{Z}\)

\(v_{boom}=3.4354*\cfrac{13534}{80}=581.18\)

and

\(T_{boom}=v^2_{rms}*\cfrac{Molar\,mass}{3*8.3144}\)

\(T_{boom}=581.18^2*\cfrac{200.592*10^{-3}}{3*8.3144}=2716.37\,K\)  or  \(2443.22\,^oC\)

also,

\(T_{p}=v^2_{rms}*\cfrac{Molar\,mass}{2*8.3144}\)

\(T_{p}=581.18^2*\cfrac{200.592*10^{-3}}{2*8.3144}=4074.55\,K\)  or  \(3801.40\,^oC\)

Other than,

\(c+v_{boom}=c+581.18\)

there's nothing new here.  How far back in time does a mere \(581.18\,ms^{-1}\) send us?

It is possible to stir up \(v_{boom}\) as in a vortex; since \(v_{boom}\) is the target velocity, a cylindrical drum will work better.