Loading [MathJax]/jax/output/CommonHTML/jax.js

Monday, January 8, 2018

Projecting 3D Image

From the post "Phase Shift, No Normal" dated 07 Jan 2018,

P=cf+cfλisin(θi)π

where

cf=λr[tan(θr)2cosec(2θr)+cosec(θr)]

and

cf=λi[tan(θi)2cosec(2θi)+cosec(θi)]

Specifically, if we consider,

λiλr=sin(θi)sin(θr)=1.5

θr=sin1(sin(θi)1.5)

and plot P with respect to θi only, we have,


When we zoomed in π2θiπ2,


cf is sinusoidal.  The phase different changes from zero up to 1.25π.

Being able to quantify phase here, allows for manipulating phase in optical signals easier.

By varying phase, it is possible to project a pseudo-3D image out from a flat screen.