Loading [MathJax]/jax/output/CommonHTML/jax.js

Wednesday, July 30, 2014

Who's Ringing? Wobbly Hydrogen?

From the post "Beijing Mask Opera and Wobbling Hydrogen",

Ft=mea=q24πεor2cos(θ) --- (1)

When v=c,

r=q24πεomec2sin2(θ)=xcos(θ) --- (2)

x=q24πεomec2sin2(θ)cos(θ)

dxdθ=q24πεomec2(2cos2(θ)sin(θ)sin3(θ))

The negative sign is the result of x decreasing as θ increases.

d2xdθ2=q24πεomec2(2cos3(θ)7cos(θ)sin2(θ))

d2xdθ2dθ2d2t=dx2dt2=q24πεomec2(2cos3(θ)7cos(θ)sin2(θ))dθ2d2t --- (*)

Substitute (2) into  (1)

mea=4πεom2ec4q2cos(θ)sin4(θ)

a=4πεomec4q2cos(θ)sin4(θ)=dx2dt2

From  (*),

4πεomec4q2cos(θ)sin4(θ)=q24πεomec2(2cos3(θ)7cos(x)sin2(θ))dθ2d2t

16π2ε2om2ec6q4=sin4(θ)(2cos2(θ)7sin2(θ))dθ2d2t

16π2ε2om2ec6q4T0d2t=π20.9553sin4(θ)(2cos2(θ)7sin2(θ))dθ2

This was solved on the web,

π20.955sin4(θ)(2cos2(θ)7sin2(θ))dθdθ=2358870+3128000033π2128+103cos(191100)12823cos(19150)256+cos(573100)128

8π2ε2om2ec6q4T2=0.8927

And the period of this oscillation is 4T,

T=0.8927q48π2ε2om2ec6

T=0.89278q2πεomec3

Tp=4T  = 4*( 0.8927/8)^(1/2)*(1.602176565e-19)^2/(pi*(8.854187817e-12)*(9.10938291e-31)*(299792458)^3)

Tp = 5.02388e-23 s

And the resonance frequency is,

f = 1.9905e22 Hz

Comparing this to the previous estimate, this value is fair.  It is expected that the oscillation frequency be higher because the system is not linear (1r2) as was the first estimate.  The correction factor is pi/4*(8/0.8927)^(1/2) = 2.3511.