Processing math: 6%

Sunday, July 27, 2014

To Light Speed and Beyond

However, an electron under the attraction of a single positive charge experiences acceleration given by,

meae=q24πεor2

ae=q24πεomer2

d2rdt2r2=q24πεome



\int _{ 0 }^{ r }{ \cfrac { r^{ 3 } }{ 3 }  } dr=\cfrac { q^{ 2 } }{ 4\pi \varepsilon _{ o }m_{ e } } \int _{ 0 }^{ t }{ t+C } dt

\cfrac { { r }^{ 4 } }{ 12 } =\cfrac { q^{ 2 } }{ 4\pi \varepsilon _{ o }m_{ e } } \left\{ \cfrac { { t }^{ 2 } }{ 2 } +Ct+B \right\} --- (1)

When t=0,    r=r_o

B=\cfrac { { r }_{ o }^{ 4 }\pi \varepsilon _{ o }m_{ e } }{ 3q^{ 2 } }

Differentiating (1) wrt time t,

\cfrac { { r }^{ 3 } }{ 3 } \cfrac { dr }{ dt } =\cfrac { { r }^{ 3 } }{ 3 } v=\cfrac { q^{ 2 } }{ 4\pi \varepsilon _{ o }m_{ e } } \left\{ t+C \right\}

Suppose t=0,  v=0    therefore     C=0    and we have

\cfrac { { r }^{ 3 } }{ 3 } v=\cfrac { q^{ 2 } }{ 4\pi \varepsilon _{ o }m_{ e } }t

\cfrac { { r }^{ 4 } }{ 12 } =\cfrac { q^{ 2 } }{ 4\pi \varepsilon _{ o }m_{ e } } \left\{ \cfrac { { t }^{ 2 } }{ 2 }  \right\} +\cfrac { { r }_{ o }^{ 4 } }{ 12 }

And if the electron is accelerated to velocity c,

t=t_{ f }    v=c     r=r_{ f }

\cfrac { r^3_{ f }  }{ 3 } c=\cfrac { q^{ 2 } }{ 4\pi \varepsilon _{ o }m_{ e } } t_{ f }

{ t }_{ f }=\cfrac { 4\pi \varepsilon _{ o }m_{ e } }{ 3{ q }^{ 2 } }r^3_{ f } c  --- (*)

and

\cfrac { r^4_{ f } }{ 12 } =\cfrac { q^{ 2 } }{ 4\pi \varepsilon _{ o }m_{ e } } \left\{ \cfrac { { t_{ f } }^{ 2 } }{ 2 }  \right\} +\cfrac { { r }_{ o }^{ 4 } }{ 12 }

\cfrac { t_{ f }^2 }{ 2 } =\cfrac { \pi \varepsilon _{ o }m_{ e } }{ { 3q }^{ 2 } } \{ { r_{ f } }^{ 4 }-{ r_{ o } }^{ 4 }\}

\cfrac { { t_{ f } }^{ 2 } }{ 2 } =\cfrac { \pi \varepsilon _{ o }m_{ e } }{ 3{ q }^{ 2 } } ({ r_{ f } }-{ r_{ o } })({ r }_{ f }+{ r }_{ o })({ r_{ f } }^{ 2 }+{ r_{ o } }^{ 2 })

r_f<(r_f+r_o) and r_f^2<({ r_{ f } }^{ 2 }+{ r_{ o } }^{ 2 })

{ (r_{ f } }-{ r_{ o } }).r_f^3=\Delta r.r_f^3<\cfrac { 3{ q }^{ 2 } }{ 2\pi \varepsilon _{ o }m_{ e } } { t_{ f } }^{ 2 }

Substitute (*) into the above,

 \Delta r<\cfrac { 8\pi \varepsilon _{ o }m_{ e } }{ 3{ q }^{ 2 } } { r_{ f } }^{ 3 }c^{ 2 }

\cfrac { 8\pi \varepsilon _{ o }m_{ e } }{ 3{ q }^{ 2 } }c^{ 2 }=8pi*8.854187817e-12*9.10938291e-31*(299792458)^2/(3*(1.602176565e-19)^2)=2.3658e14 m-5

If r_f is a thousand times the atomic radius of hydrogen then

r_f = 1000*5.29e-11

 \Delta r<(5.29e-8)^3*2.3658e14

 \Delta r<3.502233061962e-8 m

If r_f is a hundred times the atomic radius of hydrogen then

r_f = 100*5.29e-11

 \Delta r<(5.29e-9)^3*2.3658e14

 \Delta r<5.185e-11 m  which means, an electron has to accelerated over a distance equal to the atomic radius of hydrogen in order to gain light speed at a distance of 100 times hydrogen radius from the hydrogen.

If r_f is a ten times the atomic radius of hydrogen then

r_f = 10*5.29e-11

 \Delta r<(5.29e-10)^3*2.3658e14

 \Delta r<3.502e-14 m   which is a thousand times less that the atomic radius of hydrogen.

If r_f is a 2 times the atomic radius of hydrogen then

r_f = 2*5.29e-11

 \Delta r<(1.058e-10)^3*2.3658e14

 \Delta r<2.802e-16 m   which is a hundred thousand times less that the atomic radius of hydrogen.

This shows that an electron takes very little distance to accelerate to light speed, c.  It is reasonable to assume that an electron in motion under the attraction of a positive charge is already at light speed.