meae=q24πεor2
ae=q24πεomer2
d2rdt2r2=q24πεome
∬
\int _{ 0 }^{ r }{ \cfrac { r^{ 3 } }{ 3 } } dr=\cfrac { q^{ 2 } }{ 4\pi \varepsilon _{ o }m_{ e } } \int _{ 0 }^{ t }{ t+C } dt
\cfrac { { r }^{ 4 } }{ 12 } =\cfrac { q^{ 2 } }{ 4\pi \varepsilon _{ o }m_{ e } } \left\{ \cfrac { { t }^{ 2 } }{ 2 } +Ct+B \right\} --- (1)
When t=0, r=r_o
B=\cfrac { { r }_{ o }^{ 4 }\pi \varepsilon _{ o }m_{ e } }{ 3q^{ 2 } }
Differentiating (1) wrt time t,
\cfrac { { r }^{ 3 } }{ 3 } \cfrac { dr }{ dt } =\cfrac { { r }^{ 3 } }{ 3 } v=\cfrac { q^{ 2 } }{ 4\pi \varepsilon _{ o }m_{ e } } \left\{ t+C \right\}
Suppose t=0, v=0 therefore C=0 and we have
\cfrac { { r }^{ 3 } }{ 3 } v=\cfrac { q^{ 2 } }{ 4\pi \varepsilon _{ o }m_{ e } }t
\cfrac { { r }^{ 4 } }{ 12 } =\cfrac { q^{ 2 } }{ 4\pi \varepsilon _{ o }m_{ e } } \left\{ \cfrac { { t }^{ 2 } }{ 2 } \right\} +\cfrac { { r }_{ o }^{ 4 } }{ 12 }
And if the electron is accelerated to velocity c,
t=t_{ f } v=c r=r_{ f }
\cfrac { r^3_{ f } }{ 3 } c=\cfrac { q^{ 2 } }{ 4\pi \varepsilon _{ o }m_{ e } } t_{ f }
{ t }_{ f }=\cfrac { 4\pi \varepsilon _{ o }m_{ e } }{ 3{ q }^{ 2 } }r^3_{ f } c --- (*)
and
\cfrac { r^4_{ f } }{ 12 } =\cfrac { q^{ 2 } }{ 4\pi \varepsilon _{ o }m_{ e } } \left\{ \cfrac { { t_{ f } }^{ 2 } }{ 2 } \right\} +\cfrac { { r }_{ o }^{ 4 } }{ 12 }
\cfrac { t_{ f }^2 }{ 2 } =\cfrac { \pi \varepsilon _{ o }m_{ e } }{ { 3q }^{ 2 } } \{ { r_{ f } }^{ 4 }-{ r_{ o } }^{ 4 }\}
\cfrac { { t_{ f } }^{ 2 } }{ 2 } =\cfrac { \pi \varepsilon _{ o }m_{ e } }{ 3{ q }^{ 2 } } ({ r_{ f } }-{ r_{ o } })({ r }_{ f }+{ r }_{ o })({ r_{ f } }^{ 2 }+{ r_{ o } }^{ 2 })
r_f<(r_f+r_o) and r_f^2<({ r_{ f } }^{ 2 }+{ r_{ o } }^{ 2 })
{ (r_{ f } }-{ r_{ o } }).r_f^3=\Delta r.r_f^3<\cfrac { 3{ q }^{ 2 } }{ 2\pi \varepsilon _{ o }m_{ e } } { t_{ f } }^{ 2 }
Substitute (*) into the above,
\Delta r<\cfrac { 8\pi \varepsilon _{ o }m_{ e } }{ 3{ q }^{ 2 } } { r_{ f } }^{ 3 }c^{ 2 }
\cfrac { 8\pi \varepsilon _{ o }m_{ e } }{ 3{ q }^{ 2 } }c^{ 2 }=8pi*8.854187817e-12*9.10938291e-31*(299792458)^2/(3*(1.602176565e-19)^2)=2.3658e14 m-5
If r_f is a thousand times the atomic radius of hydrogen then
r_f = 1000*5.29e-11
\Delta r<(5.29e-8)^3*2.3658e14
\Delta r<3.502233061962e-8 m
If r_f is a hundred times the atomic radius of hydrogen then
r_f = 100*5.29e-11
\Delta r<(5.29e-9)^3*2.3658e14
\Delta r<5.185e-11 m which means, an electron has to accelerated over a distance equal to the atomic radius of hydrogen in order to gain light speed at a distance of 100 times hydrogen radius from the hydrogen.
If r_f is a ten times the atomic radius of hydrogen then
r_f = 10*5.29e-11
\Delta r<(5.29e-10)^3*2.3658e14
\Delta r<3.502e-14 m which is a thousand times less that the atomic radius of hydrogen.
If r_f is a 2 times the atomic radius of hydrogen then
r_f = 2*5.29e-11
\Delta r<(1.058e-10)^3*2.3658e14
This shows that an electron takes very little distance to accelerate to light speed, c. It is reasonable to assume that an electron in motion under the attraction of a positive charge is already at light speed.If r_f is a 2 times the atomic radius of hydrogen then
r_f = 2*5.29e-11
\Delta r<(1.058e-10)^3*2.3658e14
\Delta r<2.802e-16 m which is a hundred thousand times less that the atomic radius of hydrogen.