Sunday, July 27, 2014

To Light Speed and Beyond

However, an electron under the attraction of a single positive charge experiences acceleration given by,

\(m_ea_e=\cfrac{q^2}{4\pi\varepsilon_o r^2}\)

\(a_e=\cfrac{q^2}{4\pi\varepsilon_o m_e r^2}\)

\(\cfrac{d^2r}{dt^2}r^2=\cfrac{q^2}{4\pi\varepsilon_o m_e}\)

\(\iint _{ 0 }^{ r }{ r^{ 2 } } d^{ 2 }r=\cfrac { q^{ 2 } }{ 4\pi \varepsilon _{ o }m_{ e } } \iint _{ 0 }^{ t }{ 1. } (dt)^{ 2 }\)

\( \int _{ 0 }^{ r }{ \cfrac { r^{ 3 } }{ 3 }  } dr=\cfrac { q^{ 2 } }{ 4\pi \varepsilon _{ o }m_{ e } } \int _{ 0 }^{ t }{ t+C } dt\)

\( \cfrac { { r }^{ 4 } }{ 12 } =\cfrac { q^{ 2 } }{ 4\pi \varepsilon _{ o }m_{ e } } \left\{ \cfrac { { t }^{ 2 } }{ 2 } +Ct+B \right\} \) --- (1)

When \(t=0\),    \(r=r_o\)

\( B=\cfrac { { r }_{ o }^{ 4 }\pi \varepsilon _{ o }m_{ e } }{ 3q^{ 2 } } \)

Differentiating (1) wrt time \(t\),

\( \cfrac { { r }^{ 3 } }{ 3 } \cfrac { dr }{ dt } =\cfrac { { r }^{ 3 } }{ 3 } v=\cfrac { q^{ 2 } }{ 4\pi \varepsilon _{ o }m_{ e } } \left\{ t+C \right\} \)

Suppose \(t=0\),  \(v=0\)    therefore    \( C=0\)    and we have

\( \cfrac { { r }^{ 3 } }{ 3 } v=\cfrac { q^{ 2 } }{ 4\pi \varepsilon _{ o }m_{ e } }t \)

\( \cfrac { { r }^{ 4 } }{ 12 } =\cfrac { q^{ 2 } }{ 4\pi \varepsilon _{ o }m_{ e } } \left\{ \cfrac { { t }^{ 2 } }{ 2 }  \right\} +\cfrac { { r }_{ o }^{ 4 } }{ 12 } \)

And if the electron is accelerated to velocity \(c\),

\( t=t_{ f }\)    \(v=c\)    \( r=r_{ f }\)

\( \cfrac { r^3_{ f }  }{ 3 } c=\cfrac { q^{ 2 } }{ 4\pi \varepsilon _{ o }m_{ e } } t_{ f }\)

\({ t }_{ f }=\cfrac { 4\pi \varepsilon _{ o }m_{ e } }{ 3{ q }^{ 2 } }r^3_{ f } c\)  --- (*)

and

\( \cfrac { r^4_{ f } }{ 12 } =\cfrac { q^{ 2 } }{ 4\pi \varepsilon _{ o }m_{ e } } \left\{ \cfrac { { t_{ f } }^{ 2 } }{ 2 }  \right\} +\cfrac { { r }_{ o }^{ 4 } }{ 12 } \)

\(\cfrac { t_{ f }^2 }{ 2 } =\cfrac { \pi \varepsilon _{ o }m_{ e } }{ { 3q }^{ 2 } } \{ { r_{ f } }^{ 4 }-{ r_{ o } }^{ 4 }\} \)

\(\cfrac { { t_{ f } }^{ 2 } }{ 2 } =\cfrac { \pi \varepsilon _{ o }m_{ e } }{ 3{ q }^{ 2 } } ({ r_{ f } }-{ r_{ o } })({ r }_{ f }+{ r }_{ o })({ r_{ f } }^{ 2 }+{ r_{ o } }^{ 2 })\)

\(r_f<(r_f+r_o)\) and \(r_f^2<({ r_{ f } }^{ 2 }+{ r_{ o } }^{ 2 })\)

\( { (r_{ f } }-{ r_{ o } }).r_f^3=\Delta r.r_f^3<\cfrac { 3{ q }^{ 2 } }{ 2\pi \varepsilon _{ o }m_{ e } } { t_{ f } }^{ 2 }\)

Substitute (*) into the above,

\(  \Delta r<\cfrac { 8\pi \varepsilon _{ o }m_{ e } }{ 3{ q }^{ 2 } } { r_{ f } }^{ 3 }c^{ 2 }\)

\(\cfrac { 8\pi \varepsilon _{ o }m_{ e } }{ 3{ q }^{ 2 } }c^{ 2 }\)=8pi*8.854187817e-12*9.10938291e-31*(299792458)^2/(3*(1.602176565e-19)^2)=2.3658e14 m-5

If \(r_f\) is a thousand times the atomic radius of hydrogen then

\(r_f\) = 1000*5.29e-11

\(  \Delta r\)<(5.29e-8)^3*2.3658e14

\(  \Delta r\)<3.502233061962e-8 m

If \(r_f\) is a hundred times the atomic radius of hydrogen then

\(r_f\) = 100*5.29e-11

\(  \Delta r\)<(5.29e-9)^3*2.3658e14

\(  \Delta r\)<5.185e-11 m  which means, an electron has to accelerated over a distance equal to the atomic radius of hydrogen in order to gain light speed at a distance of 100 times hydrogen radius from the hydrogen.

If \(r_f\) is a ten times the atomic radius of hydrogen then

\(r_f\) = 10*5.29e-11

\(  \Delta r\)<(5.29e-10)^3*2.3658e14

\(  \Delta r\)<3.502e-14 m   which is a thousand times less that the atomic radius of hydrogen.

If \(r_f\) is a 2 times the atomic radius of hydrogen then

\(r_f\) = 2*5.29e-11

\(  \Delta r\)<(1.058e-10)^3*2.3658e14

\(  \Delta r\)<2.802e-16 m   which is a hundred thousand times less that the atomic radius of hydrogen.

This shows that an electron takes very little distance to accelerate to light speed, \(c\).  It is reasonable to assume that an electron in motion under the attraction of a positive charge is already at light speed.