An example of \(f_{osc}\) is,
\(f_{osc}=c\sqrt{\cfrac{2\pi}{(53*10^{-12})}}\)
where for hydrogen atom, \(a_{\psi}=53\,pm\)
\(f_{osc}=1.0322e14\,Hz\)
and for Iron, \(a_{\psi}=156\,pm\)
\(f_{osc}=c\sqrt{\cfrac{2\pi}{(156*10^{-12})}}=6.0165e13\,Hz\)
What is the significance of these frequencies?
What if,
\(f_{osc}=f_{res}\)
\(c \sqrt{\cfrac{2\pi}{a_{\psi}}}=0.061\cfrac{c}{a_{\psi}}\)
\(a_{\psi}=\cfrac{(0.061)^2}{2\pi}=5.9222\text{e-4}\,m\)
a big particle. But what is the point in \(f_{osc}=f_{res}\)?
Just having fun...slurp, slurp