Wednesday, December 19, 2018

Geeky Fun And Hor Fun

An example of \(f_{osc}\) is,

\(f_{osc}=c\sqrt{\cfrac{2\pi}{(53*10^{-12})}}\)

where for hydrogen atom, \(a_{\psi}=53\,pm\)

\(f_{osc}=1.0322e14\,Hz\)

and for Iron, \(a_{\psi}=156\,pm\)

\(f_{osc}=c\sqrt{\cfrac{2\pi}{(156*10^{-12})}}=6.0165e13\,Hz\)

What is the significance of these frequencies?

What if,

\(f_{osc}=f_{res}\)

\(c \sqrt{\cfrac{2\pi}{a_{\psi}}}=0.061\cfrac{c}{a_{\psi}}\)

\(a_{\psi}=\cfrac{(0.061)^2}{2\pi}=5.9222\text{e-4}\,m\)

a big particle.  But what is the point in \(f_{osc}=f_{res}\)?

Just having fun...slurp, slurp