Monday, December 31, 2018

Through The Hole!

Happy New Year, 2019!

Through time,


van der Waals radius          f_osc                 hf_osc
2 He helium 140 pm     6.351x1013Hz       0.263 eV

empirical radius                 f_osc                 hf_osc
2 He helium 120 pm     6.860x1013Hz       0.284 eV

A beam of \(hf_{osc}\) upon a \(He\) atom triggers resonance at \(f_{osc}\).   The atom hollows out.  Upon collapse, everything inside the hollow is send forward in time.

How to trigger a collapse?  A push at \(f_{res}\), from the post "A Shield" and "A \(\Psi\) Gun" dated 31 May 2016.

More material to feed Sci-fi scripts...


Saturday, December 29, 2018

Hollow Metal

From the post "Shaking In The Infra Red" dated 24 Dec 2018, we have for the case of iron, \(Fe\),
metallic bond size of,

\(a_{\psi}=126\,pm\)

from which

\(f_{osc}=c\sqrt{\cfrac{2\pi}{(126*10^{-12})}}=6.6946e13\,Hz\)

If we were to deliver energy by the impact of electrons,

\(I_{osc}=q_e*f_{osc}=1.602176565\text{e-19}*6.6946e13=1.07259\text{e-5}\,A\approx10.7\,\mu A\)

What will happen?  What is the nature of \(f_{osc}\) resonance?

And for aluminium \(Al\),

\(f_{osc}=c\sqrt{\cfrac{2\pi}{(143*10^{-12})}}=6.2841e13\,Hz\)

\(I_{osc}=q_e*f_{osc}=1.602176565\text{e-19}*6.2841e13=1.007\text{e-5}\,A\approx10.1\,\mu A\)

Does the metal turn transparent when \(I_{osc}\) passes through it?  It is difficult to image the metal turning red hot at such low current level.  With a hole in the middle of each constituent atom, the metal may just be hollow.

Good night...


No Prize Getting Close

From the posts "X Ray, Inner Electron Cloud And Just As Shocking" dated 28 May 2016 and "X Ray, Inner Electron Cloud And Just As Shocking TWO" dated 15 Oct 2017, it was mistaken that for copper,

\(N=9\)

That is not true.  The inner shell of the copper atom has \(N=10\) electrons surrounding a \(Ar\) nucleus.  With \(E_{\beta}=1.39222\dot{A}\)

\(a_{\psi}=\cfrac{E_{\beta}}{N.2\pi}=\cfrac{1.39222\dot{A}}{10*2\pi}=0.02215\dot{A}\)

and,

\(f_{res}=0.061\cfrac{299792458}{0.02215*10^{-10}}=8.2532*10^{18}\)

And

\(I_{res}=q_e*f_{res}=1.602176565∗10^{-19}∗8.2532*10^{18}=1.322\,A\)

Compared to \(1.197\,A\), close enough, but no prize.

If \(N\) could be obtained by SPECULATING about the occupancy of the inner shell of copper,  \(ave.E_{\alpha}\) will not be necessary to estimate \(N\).  Only \(E_{\beta}\) is involved in the derivation of \(I_{res}\).

Can we be sure that \(N=10\) for copper?  No...


Tuesday, December 25, 2018

Talking Entanglement

This is wrong,


\(hf_{osc}\) does not return to the space dimension with the collapse of resonance.  When \(\psi\) accelerate to light speed near the center of the particle, it is transported to the time dimension.  Collision in the time dimension triggers an entanglement event.  Such collisions in the time dimension is the cause of entanglement.  This damps the oscillations in the particle as energy is lost.  After the collision in time, \(hf_{osc}\) returns to the space dimension,


displaced from its location where it first disappeared (the center of of the oscillating particle).

If all these speculation is true, this is how entanglement can be trigger periodically using \(hf_{osc}\).  A bombardment of \(hf_{osc}\) replenishes energy loss as impacted \(hf_{osc}\) returning from the time dimension is displaced outside of the oscillating particle.  If \(hf_{osc}\) triggers an entanglement event in the time dimension immediately, ie collides with some other particle in the time dimension upon arrival, then entanglement is also periodic.

Loss through displaced \(hf_{osc}\) can be reduced by using a big oscillating particle.

But with whom does \(hf_{osc}\) collide?  Another big oscillating particle created at the same time.

So we need, two simultaneous big particles and lots of \(hf_{osc}\).  We may also differentiate \(hf_{osc\,c}\), impacting particles that attained light speed inside the big particle and \(hf_{osc\,t}\), particles that returned from the time dimension after triggering an entanglement event.

The frequency at which \(\psi\) is replenished is \(f_r\).  When,

\(f_r\gt f_{osc}\)

the big oscillating particle increase in \(\psi\) and \(f_{osc}\) decreases via,

\(f_{osc}=c\sqrt{\cfrac{2\pi}{a_{\psi}}}\)

because \(a_{\psi}\) increases.  When,

\(f_r\lt f_{osc}\)

oscillations may stop and start with every impact and loss of \(hf_{osc}\).  When,

\(f_r=f_{osc}\)

and very passing of \(hf_{osc}\) through the center of the oscillating particle, transports one \(hf_{osc}\) (\(hf_{osc}\rightarrow h_{osc\,c}\)) to the time dimension (at a frequency of \(2f_{osc}\)), oscillation is sustain without the oscillating particle growing bigger when the return particle \(hf_{osc\,t}\) is displaced outside of the oscillating particle, ie lost.

We might have \(hf_{osc\,r}\) for returned particles that is retained inside the oscillating particle and \(hf_{osc\,l}\) for returned particles that is lost.

The simplest communication coding will be a burst of entanglements over a clocked period to signal "\(X\)" and none for "\(Y\)".  And to add noise resilience, a coded "\(XXYY\)" for the binary "\(1\)" bit and "\(XYXY\)" for the binary "0" bit.

And lastly, \(a_{\psi}\) the size of the particle oscillating at \(f_{osc}\) as governed by,

\(f_{osc}=c\sqrt{\cfrac{2\pi}{a_{\psi}}}\)

It is possible to change \(f_{osc}\) by changing \(a_{\psi}\) through the bombardment with \(hf_{osc}\) at different \(f_r\); as such \(FM\).

The size of \(hf_{osc}\) is not fixed by \(f_{osc}\).  So we have a new parameter \(a_{\psi\,hf}\), the size of \(hf_{osc}\), in addition to \(a_{\psi}\), the size of the oscillating particle.  Adjusting \(a_{\psi\,hf}\) can change the fate of the returning \(hf_{osc\,t}\); loss or be retained inside the oscillating particle.

 Good day.

Note:  \(\psi\) is energy density not energy.  \(hf_{osc}\) indicates a certain amount of energy; as \(\psi\) varies, the \(\psi\) ball that contains this amount of energy is of different size.  ie \(a_{\psi\,hf}\) varies.


A Lower Speed Limit, Lower Energy, Einstein

From the post "Just When You Think \(c\) Is The Last Constant" dated 26 Jun 2015, when considering only one particle instead of \(77\) particles making up one big particle we obtain the value for light speed before adjusting for \(\mu_o\) and \(\varepsilon_{old}\),

\(c=1.42156133\)

if we adjust this value for  \(\mu_o\) and \(\varepsilon_{old}\) by taking a short cut,

\(c=77.5871223\) adjusts to \(c_{ adj }=301763665\)

so,

\(c=1.42156133\) adjusts to

\(c_{ adj }=\cfrac{301763665}{77.5871223}*1.42156133=5528953.06\,ms^{-1}\)

This value was one of the early quoted values for light speed.

Does this mean a basic particle \(a_{\psi\,c}\) has a lower light speed limit?  If \(a_{\psi\,c}\) does have a lower light speed, this will explain the missing matter in the universe.  \(a_{\psi\,c}\) is the dark matter; it simply has not reach us yet for its slower speed.  The missing energy is the result of holding out for \(c=299792458\,ms^{-1}\) where in fact it should be \(c=5528953.06\,ms^{-1}\), ie

\(E=mc^2=m*(5528953.06)^2\)

instead of to expect,

\(E=m*(299792458)^2\)

Good night and Merry Christmas...

Note: 

\(c_{ adj }=c.\cfrac { 2ln(cosh(3.135009)) }{ 4\pi\times10^{-7}  }\)


Monday, December 24, 2018

More Red Hot

Here is a table of Van der Waals radii also from https://en.wikipedia.org/wiki/Atomic_radii_of_the_elements_(data_page)


atomic numbersymbolnamevan der Waals pmf_osc (10^14 Hz)hf_osc eV
1Hhydrogen1200.68600.284
2Hehelium1400.63510.263
3Lilithium1820.55700.230
4Beberyllium1530.60750.251
5Bboron1920.54230.224
6Ccarbon1700.57630.238
7Nnitrogen1550.60360.250
8Ooxygen1520.60950.252
9Ffluorine1470.61980.256
10Neneon1540.60560.250
11Nasodium2270.49880.206
12Mgmagnesium1730.57130.236
13Alaluminium1840.55400.229
14Sisilicon2100.51860.214
15Pphosphorus1800.56010.232
16Ssulfur1800.56010.232
17Clchlorine1750.56810.235
18Arargon1880.54810.227
19Kpotassium2750.45320.187
20Cacalcium2310.49440.204
21Scscandium2110.51730.214
22Tititaniumno datano datano data
23Vvanadiumno datano datano data
24Crchromiumno datano datano data
25Mnmanganeseno datano datano data
26Feironno datano datano data
27Cocobaltno datano datano data
28Ninickel1630.58860.243
29Cucopper1400.63510.263
30Znzinc1390.63740.264
31Gagallium1870.54950.227
32Gegermanium2110.51730.214
33Asarsenic1850.55250.228
34Seselenium1900.54520.225
35Brbromine1850.55250.228
36Krkrypton2020.52870.219
37Rbrubidium3030.43170.179
38Srstrontium2490.47620.197
39Yyttriumno datano datano data
40Zrzirconiumno datano datano data
41Nbniobiumno datano datano data
42Momolybdenumno datano datano data
43Tctechnetiumno datano datano data
44Rurutheniumno datano datano data
45Rhrhodiumno datano datano data
46Pdpalladium1630.58860.243
47Agsilver1720.57300.237
48Cdcadmium1580.59780.247
49Inindium1930.54090.224
50Sntin2170.51010.211
51Sbantimony2060.52360.217
52Tetellurium2060.52360.217
53Iiodine1980.53400.221
54Xexenon2160.51130.211
55Cscaesium3430.40580.168
56Babarium2680.45900.190
57Lalanthanumno datano datano data
58Ceceriumno datano datano data
59Prpraseodymiumno datano datano data
60Ndneodymiumno datano datano data
61Pmpromethiumno datano datano data
62Smsamariumno datano datano data
63Eueuropiumno datano datano data
64Gdgadoliniumno datano datano data
65Tbterbiumno datano datano data
66Dydysprosiumno datano datano data
67Hoholmiumno datano datano data
68Ererbiumno datano datano data
69Tmthuliumno datano datano data
70Ybytterbiumno datano datano data
71Lulutetiumno datano datano data
72Hfhafniumno datano datano data
73Tatantalumno datano datano data
74Wtungstenno datano datano data
75Rerheniumno datano datano data
76Ososmiumno datano datano data
77Iriridiumno datano datano data
78Ptplatinum1750.56810.235
79Augold1660.58330.241
80Hgmercury1550.60360.250
81Tlthallium1960.53680.222
82Pblead2020.52870.219
83Bibismuth2070.52230.216
84Popolonium1970.53540.221
85Atastatine2020.52870.219
86Rnradon2200.50660.210
87Frfrancium3480.40280.167
88Raradium2830.44670.185
89Acactiniumno datano datano data
90Ththoriumno datano datano data
91Paprotactiniumno datano datano data
92Uuranium1860.55100.228
93Npneptuniumno datano datano data
94Puplutoniumno datano datano data
95Amamericiumno datano datano data
96Cmcuriumno datano datano data
97Bkberkeliumno datano datano data
98Cfcaliforniumno datano datano data
99Eseinsteiniumno datano datano data
100Fmfermiumno datano datano data
101Mdmendeleviumno datano datano data
102Nonobeliumno datano datano data
103Lrlawrenciumno datano datano data
104Rfrutherfordiumno datano datano data
105Dbdubniumno datano datano data
106Sgseaborgiumno datano datano data
107Bhbohriumno datano datano data
108Hshassiumno datano datano data
109Mtmeitneriumno datano datano data
110Dsdarmstadtiumno datano datano data
111Rgroentgeniumno datano datano data
112Cncoperniciumno datano datano data
113Nhnihoniumno datano datano data
114Flfleroviumno datano datano data
115Mcmoscoviumno datano datano data
116Lvlivermoriumno datano datano data
117Tstennessineno datano datano data
118Ogoganessonno datano datano data

For metals with obtainable data to be compared, measured threshold frequencies for photoelectric effect are about twenty \((\approx 20)\) times higher than the data here.  This corresponds to an \(a_{\psi}\) about four hundred \((\approx 20^2)\) times smaller than the radii data presented here; where,

\(f_{osc}=c\sqrt{\cfrac{2\pi}{a_{\psi}}}\)

Good night


Hey where's my Maxwell's demon, bi-metallic strip and the demon frequency?  More missing posts!


Here, Ball Ball

Can this be so?  It is still just one \(\psi\) particle,


where the little insert graph denoted oscillation through the center of the \(psi\) particle/cloud.  A larger graph can be found in the post "\(T^4\) Strikes Again" dated 18 Jul 2015 where the first expression for \(f_{osc}\) is derived.  The expression used in the previous two posts to tabulate the elemental data is from "Another Resonance Hollow" dated 16 Dec 2018.

\(f_{osc}\) plays the role as resonance frequency of the big particle and the frequency of \(\psi\) around the smaller impact particle, \(hf_{osc}\); both big and small particles are \(\psi\) balls.

If this is so, setting a \(\psi\) particle to oscillating at \(f_o\) can be achieved by colliding it with another of energy \(hf_o\).

\(f_{osc}\) depends on \(a_{\psi}\) directly and the Kelvin temperature is not involved until we consider the change in \(a_{\psi}\) due to temperature.  At higher temperature, \(a_{\psi}\) might reduce due to collisions.  Here, temperature is as defined in the Kinetic Theory of Gases.  This temperature is not explicitly involved in the derivation of \(\psi\).

Even if this is so, how can Fermi levels be measured as a voltage difference using a voltmeter.  Why would \(hf_{osc}\) captured by a particle, set into resonance (lasting for ever), as such an energy depletion, shows up as a voltage difference?

Does energy drain = voltage drop?  Still, \(f\) as both \(f_{osc}\) and \(hf_{osc}\) is important when two particles collide.

Note:  The logic leading to this post was, find \(f_{osc}\), find \(hf_{osc}\), looks like Fermi levels...
This view resolve the need to state zero absolute temperature, that differentiate between Fermi energy and Fermi levels and rising energy states with rising temperature.  But, given a particle none is in orbit other than \(\psi\).


Shaking In The Infra Red Crystals

Cont'd from the previous post "Shaking In The Infra Red" dated 24 Dec 2018.

We have covalent radii of the elements of the periodic table, commonly found in crystals.

atomic no.symbolnameCovalent  (single bond) pmf_osc (10^14)Hz_hf eV Covalent (triple bond) pmf_osc (10^14)Hz_hf eV
1Hhydrogen381.21900.504no datano datano data
2Hehelium321.32840.549no datano datano data
3Lilithium1340.64920.268no datano datano data
4Beberyllium900.79210.328850.81510.337
5Bboron820.82990.343730.87950.364
6Ccarbon770.85640.354600.97010.401
7Nnitrogen750.86770.359541.02260.423
8Ooxygen730.87950.364531.03220.427
9Ffluorine710.89180.369531.03220.427
10Neneon690.90470.374no datano datano data
11Nasodium1540.60560.250no datano datano data
12Mgmagnesium1300.65910.2731270.66680.276
13Alaluminium1180.69180.2861110.71330.295
14Sisilicon1110.71330.2951020.74410.308
15Pphosphorus1060.72990.302940.77510.321
16Ssulfur1020.74410.308950.77100.319
17Clchlorine990.75530.312930.77920.322
18Arargon970.76300.316960.76700.317
19Kpotassium1960.53680.222no datano datano data
20Cacalcium1740.56970.2361330.65160.269
21Scscandium1440.62620.2591140.70380.291
22Tititanium1360.64440.2661080.72310.299
23Vvanadium1250.67210.2781060.72990.302
24Crchromium1270.66680.2761030.74040.306
25Mnmanganese1390.63740.2641030.74040.306
26Feiron1250.67210.2781020.74410.308
27Cocobalt1260.66950.277960.76700.317
28Ninickel1210.68320.2831010.74770.309
29Cucopper1380.63970.2651200.68600.284
30Znzinc1310.65660.272no datano datano data
31Gagallium1260.66950.2771210.68320.283
32Gegermanium1220.68030.2811140.70380.291
33Asarsenic1190.68890.2851060.72990.302
34Seselenium1160.69770.2891070.72650.300
35Brbromine1140.70380.2911100.71650.296
36Krkrypton1100.71650.2961080.72310.299
37Rbrubidium2110.51730.214no datano datano data
38Srstrontium1920.54230.2241390.63740.264
39Yyttrium1620.59040.2441240.67480.279
40Zrzirconium1480.61770.2551210.68320.283
41Nbniobium1370.64200.2661160.69770.289
42Momolybdenum1450.62410.2581130.70690.292
43Tctechnetium1560.60170.2491100.71650.296
44Ruruthenium1260.66950.2771030.74040.306
45Rhrhodium1350.64680.2671060.72990.302
46Pdpalladium1310.65660.2721120.71010.294
47Agsilver1530.60750.2511370.64200.266
48Cdcadmium1480.61770.255no datano datano data
49Inindium1440.62620.2591460.62190.257
50Sntin1410.63290.2621320.65410.271
51Sbantimony1380.63970.2651270.66680.276
52Tetellurium1350.64680.2671210.68320.283
53Iiodine1330.65160.2691250.67210.278
54Xexenon1300.65910.2731220.68030.281
55Cscaesium2250.50100.207no datano datano data
56Babarium1980.53400.2211490.61560.255
57Lalanthanum1690.57810.2391390.63740.264
58Ceceriumno datano datano data1310.65660.272
59Prpraseodymiumno datano datano data1280.66420.275
60Ndneodymiumno datano datano datano datano datano data
61Pmpromethiumno datano datano datano datano datano data
62Smsamariumno datano datano datano datano datano data
63Eueuropiumno datano datano datano datano datano data
64Gdgadoliniumno datano datano data1320.65410.271
65Tbterbiumno datano datano datano datano datano data
66Dydysprosiumno datano datano datano datano datano data
67Hoholmiumno datano datano datano datano datano data
68Ererbiumno datano datano datano datano datano data
69Tmthuliumno datano datano datano datano datano data
70Ybytterbiumno datano datano datano datano datano data
71Lulutetium1600.59410.2461310.65660.272
72Hfhafnium1500.61360.2541220.68030.281
73Tatantalum1380.63970.2651190.68890.285
74Wtungsten1460.62190.2571150.70070.290
75Rerhenium1590.59600.2461100.71650.296
76Ososmium1280.66420.2751090.71980.298
77Iriridium1370.64200.2661070.72650.300
78Ptplatinum1280.66420.2751100.71650.296
79Augold1440.62620.2591230.67760.280
80Hgmercury1490.61560.255no datano datano data
81Tlthallium1480.61770.2551500.61360.254
82Pblead1470.61980.2561370.64200.266
83Bibismuth1460.62190.2571350.64680.267
84Popoloniumno datano datano data1290.66160.274
85Atastatineno datano datano data1380.63970.265
86Rnradon1450.62410.2581330.65160.269
87Frfranciumno datano datano datano datano datano data
88Raradiumno datano datano data1590.59600.246
89Acactiniumno datano datano data1400.63510.263
90Ththoriumno datano datano data1360.64440.266
91Paprotactiniumno datano datano data1290.66160.274
92Uuraniumno datano datano data1180.69180.286
93Npneptuniumno datano datano data1160.69770.289
94Puplutoniumno datano datano datano datano datano data
95Amamericiumno datano datano datano datano datano data
96Cmcuriumno datano datano datano datano datano data
97Bkberkeliumno datano datano datano datano datano data
98Cfcaliforniumno datano datano datano datano datano data
99Eseinsteiniumno datano datano datano datano datano data
100Fmfermiumno datano datano datano datano datano data
101Mdmendeleviumno datano datano datano datano datano data
102Nonobeliumno datano datano datano datano datano data
103Lrlawrenciumno datano datano datano datano datano data
104Rfrutherfordiumno datano datano data1310.65660.272
105Dbdubniumno datano datano data1260.66950.277
106Sgseaborgiumno datano datano data1210.68320.283
107Bhbohriumno datano datano data1190.68890.285
108Hshassiumno datano datano data1180.69180.286
109Mtmeitneriumno datano datano data1130.70690.292
110Dsdarmstadtiumno datano datano data1120.71010.294
111Rgroentgeniumno datano datano data1180.69180.286
112Cncoperniciumno datano datano data1300.65910.273
113Nhnihoniumno datano datano datano datano datano data
114Flfleroviumno datano datano datano datano datano data
115Mcmoscoviumno datano datano datano datano datano data
116Lvlivermoriumno datano datano datano datano datano data
117Tstennessineno datano datano datano datano datano data
118Ogoganessonno datano datano datano datano datano data

What about Fermi levels?

Note:  The data are derived from  https://en.wikipedia.org/wiki/Atomic_radii_of_the_elements_(data_page)