Loading [MathJax]/jax/output/CommonHTML/jax.js

Tuesday, August 18, 2015

Once Again Brewster

On closer look at the situation when α2s and α2p are perpendicular,


In the second medium,

2θ1ΔθΔα=90o

where,

Δθ=θ1θ2

Δα=α1α2

which implies 2θ1>90o and so, θ1>45o

So,

θ1+θ2α1+α2=90o

both material properties ε and n are involved.  Alternatively,

2θ190o=Δθ+Δα

the change in orientation needed, is from both a change in θ and α.

When we set,

α1=θ1  --- (1)

then,

θ2+α2=90o  --- (2)

the ray splits into two perpendicular directions with orthogonal polarization.  Given a light source with a spread of values in θ, there can be a number of θ for which a split of the refracted rays orthogonal to each other can occur.  Expressions (1) and (2) are the same as those we obtained in the post "Still Looking For Brewster" dated 16 Aug 2015.  From that post,

tan(α1)tan(α2)=ε2ε1

sin2(α1)cos(α1)cos(α2)=ε2ε1n2n1

but α1+α290o as oppose to the often quoted  α1+α2=90o in the derivation for Brewster's angle.  Instead,

sin(α2)=n1n2sin(α1)

cos(α2)=1(n1n2)2sin2(α1)

So,

tan(α1).n1n2sin(α1)1(n1n2)2sin2(α1)=ε2ε1

tan2(α1)sin2(α1)=(ε2ε1n2n1)2{1(n1n2)2sin2(α1)}

tan2(α1)sin2(α1)+(ε2ε1)2sin2(α1)=(ε2ε1n2n1)2

sin4(α1)+(ε2ε1)2sin2(α1)(1sin2(α1))=(ε2ε1n2n1)2(1sin2(α1))

sin4(α1)+(ε2ε1)2sin2(α1)(ε2ε1)2sin4(α1)=(ε2ε1n2n1)2(ε2ε1n2n1)2sin2(α1)

sin4(α1){1(ε2ε1)2}+(ε2ε1)2{1+(n2n1)2}sin2(α1)=(ε2ε1n2n1)2

sin4(α1){(ε1ε2)21}+{1+(n2n1)2}sin2(α1)=(n2n1)2

which is quadratic in sin2(α1) and can yield two positive solutions for α1.

When ε2ε1=1,

{1+(n2n1)2}sin2(α1)=(n2n1)2

sin2(α1)=(n2n1)2{1+(n2n1)2}

tan(α1)=n2n1

and this Brewster!

Thank you very much.