\(\theta_2-\alpha_{2s}\lt0^o\)
and
\(\theta_2+\alpha_{2p}\gt90^o\) ??
And when \(\mu_2\gt\mu_1\)
\(\theta_2-\alpha_{2s}\gt\theta_1-\alpha\)
\(\alpha_{2s}\lt\theta_2-\theta_1+\alpha\)
and
\(\theta_2+\alpha_{2p}\gt\theta_1+\alpha\)
\(\alpha_{2p}\gt\alpha-(\theta_2-\theta_1)\)
If we define,
\(\Delta \theta=\theta_2-\theta_1\)
\(\alpha_{2s}\lt\alpha+\Delta\theta\)
and
\(\alpha_{2p}\gt\alpha-\Delta\theta\)
and the split occurs on the two sides about \(\alpha\) through the foot of the surface normal bounded by \(\pm\Delta \theta\)
When \(\mu_2\lt\mu_1\)
\(\theta_2-\alpha_{2s}\lt\theta_1-\alpha\)
\(\alpha_{2s}\gt\alpha+\Delta \theta\)
and
\(\theta_2+\alpha_{2p}\lt\theta_1+\alpha\)
\(\alpha_{2p}\lt\alpha-\Delta \theta\)