tan(θ2−α′2s)=μ2μ1tan(θ1−α)
when θ1 is large, such that
θ1−α>90o
Let x+90o=θ1−α then
tan(θ1−α)=tan(x+90o)=−cot(x)
So,
tan(θ2−α′2s)=−μ2μ1cot(θ1−α−90o)
cot(θ2−α′2s+90o)=μ2μ1cot(θ1−α−90o)
When μ2>μ1, since cot(x) is a decreasing function,
θ2−α′2s+90o<θ1−α−90o
α′2s>180o+α+Δθ
Since the α′2s has been reflected back into medium 1, Δθ=0,
α′2s>180o+α
When μ2<μ1,
θ2−α′2s+90o>θ1−α−90o
α′2s<180o+α
We can also have,
tan(θ2+α′2p)=μ2μ1tan(θ1+α)
when θ1 is large, such that
θ1+α>90o
Let x+90o=θ1+α then
tan(θ1+α)=tan(x+90o)=−cot(x)
So,
tan(θ2+α′2p)=−μ2μ1cot(θ1+α−90o)
cot(θ2+α′2p+90o)=μ2μ1cot(θ1+α−90o)
When μ2>μ1,
θ2+α′2p+90o<θ1+α−90o
α′2p<α−Δθ−180o
Since, Δθ=0
α′2p<α−180o
When μ2<μ1,
θ2+α′2p+90o>θ1+α−90o
α′2p>α−Δθ−180o
Since, Δθ=0
α′2p>α−180o
This might seem to be the same results as the post "More Bending Of Light" dated 13 Aug 2015, but the swing of αs and αp are different,
When μ2>μ1, α′2s>180o+α
When μ2<μ1, α′2p>α−180o
Previously,
When μ2>μ1, α2s<−180o+α
When μ2<μ1, α2s>−180o+α
This cases show the swing of α2s and α2p as θ1 changed. There is no Brewster angle here.