Processing math: 100%

Sunday, August 16, 2015

Looking for Brewster

When we consider,

tan(θ2α2s)=μ2μ1tan(θ1α)

when θ1 is large, such that

θ1α>90o

Let x+90o=θ1α then

tan(θ1α)=tan(x+90o)=cot(x)

So,

tan(θ2α2s)=μ2μ1cot(θ1α90o)

cot(θ2α2s+90o)=μ2μ1cot(θ1α90o)

When μ2>μ1, since cot(x) is a decreasing function,

θ2α2s+90o<θ1α90o

α2s>180o+α+Δθ

Since the α2s has been reflected back into medium 1, Δθ=0,

α2s>180o+α

When μ2<μ1,

θ2α2s+90o>θ1α90o

α2s<180o+α

We can also have,

tan(θ2+α2p)=μ2μ1tan(θ1+α)

when θ1 is large, such that

θ1+α>90o

Let x+90o=θ1+α then

tan(θ1+α)=tan(x+90o)=cot(x)

So,

tan(θ2+α2p)=μ2μ1cot(θ1+α90o)

cot(θ2+α2p+90o)=μ2μ1cot(θ1+α90o)

When μ2>μ1,

θ2+α2p+90o<θ1+α90o

α2p<αΔθ180o

Since,  Δθ=0

α2p<α180o

α2p is reflected back along α

When μ2<μ1,

θ2+α2p+90o>θ1+α90o

α2p>αΔθ180o

Since,  Δθ=0

α2p>α180o

This might seem to be the same results as the post "More Bending Of Light" dated 13 Aug 2015, but the swing of αs and αp are different,

When μ2>μ1,  α2s>180o+α

When μ2<μ1,  α2s<180o+α

When μ2>μ1,  α2p<α180o

When μ2<μ1,  α2p>α180o

Previously,

When μ2>μ1,  α2s<180o+α

When μ2<μ1, α2s>180o+α

This cases show the swing of α2s and α2p as θ1 changed.  There is no Brewster angle here.