Tuesday, October 18, 2016

What "It"?

Given,

\(C=\cfrac { \sqrt [ 3 ]{ n_{ 2 } } -\sqrt [ 3 ]{ n_{ 1 } }  }{ \sqrt [ 3 ]{ n_{ 1 }n_{ 2 } }  } -\cfrac { n_{ 2 }^{ 2 }-n_{ 1 }^{ 2 } }{ (n_{ 1 }n_{ 2 })^{ 2 } }\)

when \(n_2\lt n_1\), for absorption lines, \(n_1\leftrightarrow n_2\),

\(D=\cfrac { n_{ 2 }^{ 2 }-n_{ 1 }^{ 2 } }{ (n_{ 1 }n_{ 2 })^{ 2 } }-\cfrac { \sqrt [ 3 ]{ n_{ 2 } } -\sqrt [ 3 ]{ n_{ 1 } }  }{ \sqrt [ 3 ]{ n_{ 1 }n_{ 2 } }  } =-C\)

And so we can expect the spectra line \(n_{1\rightarrow 2}\) to cancel the reverse spectra line \(n_{2\rightarrow 1}\).

For the sake of it....