Thursday, October 13, 2016

Don't Worry, Be Creepy

It does not quite matter, given

\(f(n)=\left(\cfrac{\sqrt[3]{n}-{1}}{\sqrt[3]{n}}\right)\)

n f(n)
70 0.7573572497
71 0.758501808
72 0.7596250716
73 0.7607277244
74 0.7618104192
75 0.7628737797
76 0.7639184021
77 0.7649448568
78 0.7659536896
79 0.7669454232

The value of \(f(n)\) for the range \(70\le n\le79\) average to

\(f(n)=0.762\)

from which we may estimate \(f_{\psi\,c}\) from,

\(\Delta E_{2\rightarrow 1}=h.f_{\psi\,c}\left(\cfrac{\sqrt[3]{n_2}-\sqrt[3]{n_1}}{\sqrt[3]{n_1}\sqrt[3]{n_2}}\right)\)

where \(n_1=1\)

from the post "Sizing Them Up Again..." dated 4 Oct 2016.

But what is \(n\) or \(n_{\small{large}}\)?

Better yet since the emission spectra line as the result of  \((n_2=2,\,n_1=1)\), (two basic particles, \(n=1\) coalesce) that produces a pair of photons, \(\Delta E_{1\rightarrow 2}\) has double the intensity and hence readily identifiable,

\(\Delta E_{1\rightarrow 2}=h.f_{\psi\,c}\left(\cfrac{\sqrt[3]{2}-\sqrt[3]{1}}{\sqrt[3]{1}\sqrt[3]{2}}\right)\)

where \(n_1=1\) and \(n_2=2\).

\(\Delta E_{1\rightarrow 2}=h.f_{\psi\,c}\left(\cfrac{\sqrt[3]{2}-1}{\sqrt[3]{2}}\right)\)

\(\Delta E_{1\rightarrow 2}=0.2063hf_{\psi\,c}\)

without worry about what \(n_{\small{large}}\) might be.

This is different from Planck's relation \(E=h.f\).  A factor of about \(\frac{1}{5}\) creeps in.