Thursday, October 13, 2016

Murder Yet Written

Of course,

\(\cfrac{\sqrt[3]{n_2}-\sqrt[3]{n_1}}{\sqrt[3]{n_1n_2}}\ne\cfrac{1}{n_1^2}-\cfrac{1}{n_2^2}=\cfrac{n_2^2-n_1^2}{(n_1n_2)^2}\)

but are they parallel over the range of \(n_1\) and \(n_2\) in consideration.

A plot of \(\cfrac { \sqrt [ 3 ]{ n_{ 2 } } -\sqrt [ 3 ]{ n_{ 1 } }  }{ \sqrt [ 3 ]{ n_{ 1 }n_{ 2 } }  } -\cfrac { n_{ 2 }^{ 2 }-n_{ 1 }^{ 2 } }{ (n_{ 1 }n_{ 2 })^{ 2 } } \) gives



where the values of the expression for \(n_1=1\) is negative and the graphs of for \(n_1=2\) and \(n_1=5\) are coincidental.

A plot of the ratio \(\cfrac { \cfrac { \sqrt [ 3 ]{ n_{ 2 } } -\sqrt [ 3 ]{ n_{ 1 } }  }{ \sqrt [ 3 ]{ n_{ 1 }n_{ 2 } }  }  }{ \cfrac { n_{ 2 }^{ 2 }-n_{ 1 }^{ 2 } }{ (n_{ 1 }n_{ 2 })^{ 2 } }  } \) gives,


The values of the ratio varies with both \(n_2\) and \(n_1\).  In the case of \(n_1=1\), the ratio \(\cfrac { \cfrac { \sqrt [ 3 ]{ n_{ 2 } } -\sqrt [ 3 ]{ n_{ 1 } }  }{ \sqrt [ 3 ]{ n_{ 1 }n_{ 2 } }  }  }{ \cfrac { n_{ 2 }^{ 2 }-n_{ 1 }^{ 2 } }{ (n_{ 1 }n_{ 2 })^{ 2 } }  } \) is close to \(1\)

Rydberg constant is not dead.  Yet...