Monday, October 24, 2016

A Deep Dark Secret

Consider the force holding \(\psi\) in circular motion,

\(L=I\omega \)

\( F=L\cfrac{\omega}{r} \)

scale by \(r\), as the further from the center the less \(L\) has to turn,

\( F=I\cfrac{\omega ^{ 2 }}{r}\)

In the case of a point mass, \(m\) in circular motion with velocity \(v\), in circle of radius of \(r\),

\(F=mr^2\left(\cfrac{v}{r}\right)^2.\cfrac{1}{r}=m\cfrac{v^2}{r}\)

where \(I=mr^2\) and  \(\omega =\cfrac{v}{r}\) in radian per second.  Which is as expected.

In this case of a sphere of \(\psi\),

\( F=\cfrac { 2 }{ 5 } m_{ \psi  }a^{ 2 }_{ \psi  }\left( \cfrac { c }{ 2\pi a_{ \psi  } }  \right) ^{ 2 }.\cfrac{1}{a_{ \psi  } }\)

where \(\omega=\cfrac{v}{2\pi a_{\psi}}\) in per second.

\( m_{ \psi  }=\rho _{ \psi  }.\cfrac { 4 }{ 3 } \pi a^{ 3 }_{ \psi  }\)

\( F=\cfrac { 4 }{ 30\pi }  c^{ 2 }\rho _{ \psi  }.a^{ 2 }_{ \psi  }\)

\( W_{ 1\rightarrow 2 }=\int _{ a_{ \psi \,n1 } }^{ a_{ \psi \, n2 } }{ F } da_{ \psi  }\)

If we assume that, \( \rho _{ \psi  }\propto \psi \).

For,

\( a_{ \psi \, n1 }>a_{ \psi \,\pi  }\) and \( a_{ \psi \, n2 }>a_{ \psi \,\pi  }\)

\(\psi=\psi_{\pi}=constant\)

We have,

\( W_{ 1\rightarrow 2 }=\cfrac { 4 }{ 90\pi } c^{ 2 }\rho _{ \psi  }\left[ a^{ 3 }_{ \psi \, n_{ 2 } }-a^{ 3 }_{ \psi \, n_{ 1 } } \right] \)

\(W_{ 1\rightarrow 2 }=\cfrac { 4 }{ 90\pi  } c^{ 2 }\rho _{ \psi  }a^{ 3 }_{ \psi \, c }\left[ n_{ 2 }-n_{ 1 } \right] \)

which is just as wrong as the other expressions derived previously.

For,

\( a_{ \psi \, \, n1 }\lt a_{ \psi \, \, \pi  }\)

\( \, \, a_{ \psi \, \, n2 }\lt a_{ \psi \, \, \pi  }\)

\( W_{ 1\rightarrow 2 }=\int _{ a_{ \psi \, \, n1 } }^{ a_{ \psi \, \, n2 } }{ F } da_{ \psi  }=\cfrac { 4 }{ 30 \pi} c^{ 2 }\int _{ a_{ \psi \, \, n1 } }^{ a_{ \psi \, \, n2 } }{ \rho _{ \psi  }.a^{2 }_{ \psi  } } da_{ \psi  }\)

From the post "Not Quite The Same Newtonian Field" dated 23 Nov 2014,

\( \psi =-i{ 2{ mc^{ 2 } } }\, ln(cosh(\cfrac { G }{ \sqrt { 2{ mc^{ 2 } } }  } (x-x_{ z })))+c\)

\( \psi =-{ 2{ mc^{ 2 } } }\, ln(cosh(\cfrac { G }{ \sqrt { 2{ mc^{ 2 } } }  } (a_{ \psi  })))\)

under the assumption, \( \rho _{ \psi  }\propto \psi \)

\( \rho _{ \psi  }=A. \psi \)

We have,

\( W_{ 1\rightarrow 2 }=A.\cfrac { 8 }{ 30 \pi } mc^{ 2 }\int _{ a_{ \psi \,  n1 } }^{ a_{ \psi \,  n2 } }{ -a^{ 2 }_{ \psi  } } ln(cosh(\cfrac { G }{ \sqrt { 2{ mc^{ 2 } } }  } (a_{ \psi  })))\,da_{ \psi  }\)

At last, inevitably the ugly bride meets the in-laws ...

What is \(m\)?  This was a problem since \(F_{\rho}\) or \(F\), the force density was written down.  A force has to act on some mass.  If force density acts on mass density then,

\(\rho_{\psi}=m\)

then \(\psi=f(\rho_{\psi})\), given \(\rho_\psi\),

\( \psi =-{ 2{ \rho_{\psi}c^{ 2 } } }\, ln(cosh(\cfrac { G }{ \sqrt { 2{ \rho_{\psi}c^{ 2 } } }  } (a_{ \psi  })))\)

from which we solve for \(\rho_{\psi}\) given \(\psi\).  Which make sense because \( W_{ 1\rightarrow 2 }\) is moving \(\psi\) about, we must know the amount of \(\psi\) in question to calculate \( W_{ 1\rightarrow 2 }\).

But does energy density has mass density?  Does energy has mass?

This path does not provide an easy answer to \( W_{ 1\rightarrow 2 }\)  as \(L_{n1}\rightarrow L_{n2}\).  \( W_{ 1\rightarrow 2 }\) might be similar to Rydberg formula,

\(\cfrac{1}{\lambda}=R_{\small{H}}\left(\cfrac{1}{n^2_1}-\cfrac{1}{n^2_2}\right)\)

A new passport and a ticket to nowhere...you asked for it!