So, about Fermat's Last Theorem where a,b,c are integers
an+bn=cnLetx+1=a,y+1=b,z=c,an+bn=cnLetx+1=a,y+1=b,z=c, so a,b>1a,b>1
We have
(x+1)n+(y+1)n−zn=0(x+1)n+(y+1)n−zn=0
Consider
[(x+1)+(y+1)]n=(x+1)n+(y+1)n+(n1)(x+1)(y+1)n−1+(n2)(x+1)2(y+1)n−1+...+(nn−1)(x+1)n−1(y+1)1[(x+1)+(y+1)]n=(x+1)n+(y+1)n+(n1)(x+1)(y+1)n−1+(n2)(x+1)2(y+1)n−1+...+(nn−1)(x+1)n−1(y+1)1
then
[(x+1)+(y+1)]n−zn>(x+1)n+(y+1)n−zn[(x+1)+(y+1)]n−zn>(x+1)n+(y+1)n−zn
Also,
(x+1)n=xn+(n1)xn−1+(n2)xn−2+...+(nn−1)x+1(y+1)n=yn+(n1)yn−1+(n2)yn−2+...+(nn−1)y+1(z+1)n=zn+(n1)zn−1+(n2)zn−2+...+(nn−1)z+1(x+1)n=xn+(n1)xn−1+(n2)xn−2+...+(nn−1)x+1(y+1)n=yn+(n1)yn−1+(n2)yn−2+...+(nn−1)y+1(z+1)n=zn+(n1)zn−1+(n2)zn−2+...+(nn−1)z+1
We have,
[(x+1)+(y+1)]n−zn=xn+yn−zn+(n1)[xn−1+(x+1)(y+1)n−1+yn−1]+(n2)[xn−2+(x+1)2(y+1)n−2+yn−2]+...+(nn−1)[x+(x+1)n−1(y+1)+y]+2[(x+1)+(y+1)]n−zn=xn+yn−zn+(n1)[xn−1+(x+1)(y+1)n−1+yn−1]+(n2)[xn−2+(x+1)2(y+1)n−2+yn−2]+...+(nn−1)[x+(x+1)n−1(y+1)+y]+2
[(x+1)+(y+1)]n−zn=xn+yn−zn+(n1)[xn−1+f1(x,y)+yn−1]+(n2)[xn−2+f2(x,y)+yn−2]+...+(nn−1)[x+fn−1(x,y)+y]+2+∑n−1i=1(ni)
then
[(x+1)+(y+1)]n−zn>(x+1)n+(y+1)n−zn
(x+1)n+(y+1)n−zn>xn+yn−zn+2+∑n−1i=1(ni)-----------(2a)
(x+1)n+(y+1)n−zn>xn+yn−zn ---------------------------(1)
xn+yn−zn+2+∑n−1i=1(ni)>xn+yn−(z+1)n+2+∑n−1i=1(ni) -----------(2b)
and so, when
(x+1)n+(y+1)n−zn=0 -------------(S)
then from expression (2a) and (2b)
xn+yn−(z+1)n+2+∑n−1i=1(ni)<0
and from expression (1)
xn+yn−zn<0
that is (z+1)n−zn<2+∑n−1i=1(ni)
(z+1)n−zn=(n1)zn−1+(n2)zn−2+...+(nn−1)z+1
=∑n−1i=1(ni)zn−i+1<2+∑n−1i=1(ni) -------------(3)
for n=2
(21)z+1<∑11(2i)2z<3 which can be true. (This is a statment that was derived from the starting condition (S) that prove to be possible.)
but for n=3
(31)z2+(32)z+1<2+∑2i=1(3i)
3z2+3z≮7 for all z>1.
In fact we have a contradiction for all n>2 because the expression ∑n−1i=1(ni) is just the coefficients of the z on the L.H.S. of expression (3). (For n>2 the derived statment proved to be false, invalidating the starting condition (S).) And so, (x+1)n+(y+1)n≠zn for n>2.
Therefore,
an+bn=cn has no valid solution for n>2 and a,b>1
And that's Fermat's Last Theorem, proved by contradiction.
(Expression (3) is derived from (S), it is not an attempt to solve for z.)