Since,
g=−12.dv2tdx
and
v2tc2=γ(x)2
g=−c22dγ(x)2dx
because gravity is given by,
g=−goe−goreGo(x)
We have an expression for time dilation γ,
dγ(x)2dx=2goc2e−goreGo(x)
γ(x)2=∫dγ(x)2=∫2goc2e−goreGo(x)dx
γ(x)2=A−2Goc2ree−goreGo(x)
When x→∞, γ(x)2→1, because vt=c when space is normal.
γ(x)2=1−2Goc2ree−goreGo(x)
As such a gamma field, the change in γ=vtc over x is given by
γ(x)=√1−2Goc2ree−goreGo(x)
This is an expression for time dilation over a gravitational field.