Loading [MathJax]/jax/output/CommonHTML/jax.js

Wednesday, January 11, 2023

Finding Pi In A square Plate

 Consider again,


θ0=π4

Area=r(1sinθ01).r(1sinθ01)tanθ0=r2(1sinθ01)2tanθ0

For all four quadrant, multiply by M0=4.

Consider the next triangle for which there are two, 

θ1=12(π(π2θ0))=π4+θ02=38π

Area=r(1sinθ11).r(1sinθ11)tanθ1=r2(1sinθ11)2tanθ1

M1=42

And the next θ2,

θ2=12(π(π2θ1))=π4+θ12=716π

We have,

Sθ2=π4+12(π4+θ02)=π4+12π4+θ022

Sθ3=π4+12(π4+12(π4+θ02))=π4+π24+π224+θ023

Sθ4=π4+12(π4+π24+π224+θ023)=π4+π24+π224+π234+θ024

In general, 

Sθi=π22+π23+π24+...+π2i+1+θ02i

Multiplicative factor due to symmetry, M2=422=16, in general for θi,

Mi=42i=2i+2

We have a series Ei to estimate π, with r=1, area of square 4,

ϵi=Mi(1sinθi1)2tanθi

θ0=π4

Sθi=π22+π23+...+π2i+1+θ02i=π22+π23+...+π2i+2

and Mi=2i+2

Ei=4ϵ0ϵ1ϵ2...ϵi

E0=8(21)=3.313708

ϵ1=8(1sin(π4+π8)1)2tan(π4+π8)=0.131111

E1=8(21)0.131111=3.182598

ϵ2=16(1sin(π4+π8+π16)1)2tan(π4+π8+π16)=0.03087297

E2=8(21)0.1311110.03087297=3.151725

ϵ3=32(1sin(π4+π8+π16+π32)1)2tan(π4+π8+π16+π32)=0.0076065

E3=8(21)0.1311110.030872970.0076065=3.144118

ϵ4=64(1sin(π4+π8+π16+π32+π64)1)2tan(π4+π8+π16+π32+π64)=0.001894755

E4=8(21)0.1311110.030872970.00760650.001894755=3.1422236

ϵ5=128(1sin(π4+π8+π16+π32+π64+π128)1)2tan(π4+π8+π16+π32+π64+π128)=0.000473261

E5=8(21)0.1311110.030872970.00760650.0018947550.000473261=3.1417500

ϵ6=256(1sin(π4+π8+π16+π32+π64+π128+π256)1)2tan(π4+π8+π16+π32+π64+π128+π256)=0.000118288

E6=8(21)0.1311110.030872970.00760650.0018947550.0004732610.000118288=3.1416317

Just for fun.  π as a simple series.