Consider again,
θ0=π4
Area=r(1sinθ0−1).r(1sinθ0−1)tanθ0=r2(1sinθ0−1)2tanθ0
For all four quadrant, multiply by M0=4.
Consider the next triangle for which there are two,
θ1=12(π−(π2−θ0))=π4+θ02=38π
Area=r(1sinθ1−1).r(1sinθ1−1)tanθ1=r2(1sinθ1−1)2tanθ1
M1=4∗2
And the next θ2,
θ2=12(π−(π2−θ1))=π4+θ12=716π
We have,
Sθ2=π4+12(π4+θ02)=π4+12∗π4+θ022
Sθ3=π4+12(π4+12(π4+θ02))=π4+π2∗4+π22∗4+θ023
Sθ4=π4+12(π4+π2∗4+π22∗4+θ023)=π4+π2∗4+π22∗4+π23∗4+θ024
In general,
Sθi=π22+π23+π24+...+π2i+1+θ02i
Multiplicative factor due to symmetry, M2=4∗22=16, in general for θi,
Mi=4∗2i=2i+2
We have a series Ei to estimate π, with r=1, area of square 4,
ϵi=Mi(1sinθi−1)2tanθi
θ0=π4
Sθi=π22+π23+...+π2i+1+θ02i=π22+π23+...+π2i+2
and Mi=2i+2
Ei=4−ϵ0−ϵ1−ϵ2...−ϵi
E0=8(√2−1)=3.313708
ϵ1=8(1sin(π4+π8)−1)2tan(π4+π8)=0.131111
E1=8(√2−1)−0.131111=3.182598
ϵ2=16(1sin(π4+π8+π16)−1)2tan(π4+π8+π16)=0.03087297
E2=8(√2−1)−0.131111−0.03087297=3.151725
ϵ3=32(1sin(π4+π8+π16+π32)−1)2tan(π4+π8+π16+π32)=0.0076065
E3=8(√2−1)−0.131111−0.03087297−0.0076065=3.144118
ϵ4=64(1sin(π4+π8+π16+π32+π64)−1)2tan(π4+π8+π16+π32+π64)=0.001894755
E4=8(√2−1)−0.131111−0.03087297−0.0076065−0.001894755=3.1422236
ϵ5=128(1sin(π4+π8+π16+π32+π64+π128)−1)2tan(π4+π8+π16+π32+π64+π128)=0.000473261
E5=8(√2−1)−0.131111−0.03087297−0.0076065−0.001894755−0.000473261=3.1417500
ϵ6=256(1sin(π4+π8+π16+π32+π64+π128+π256)−1)2tan(π4+π8+π16+π32+π64+π128+π256)=0.000118288
E6=8(√2−1)−0.131111−0.03087297−0.0076065−0.001894755−0.000473261−0.000118288=3.1416317
Just for fun. π as a simple series.