Looking at,
\(c^k= e^{-i\cfrac{\pi}{2k}}. c^{i\cfrac{\pi}{2}}\) This is wrong.
Consider,
\(y=c^{i\cfrac{\pi}{2}}\)
\(ln(y)=i\cfrac{\pi}{2}ln(c)\)
\(y=c.e^{i\cfrac{\pi}{2}}\)
\(c^k= c.e^{i\cfrac{\pi}{2}\left(1-\cfrac{1}{k}\right)}\)
Visually,
\(\cfrac{\pi}{2}\left(1-\cfrac{1}{k}\right) \longrightarrow \cfrac{\pi}{2}\) as \(k\rightarrow \infty\)With \(|c|\rightarrow \infty\), \(c\) goes to heaven, upwards.