Sunday, June 8, 2014

Like Wave, Like Particle, Not Attracted to Electrons II

From the previous post "Like Wave, Like Particle, Not Attracted to Electrons", the energy in required in moving from \(r\) at \(\infty\) to \({r}_{eo}\) is

\(PE_e={ m }_{ e }c^{ 2 }\lim _{ r\rightarrow \infty  }{ \{ln{( \cfrac{{r}}{{r_{eo} }})}+C({ r }_{ eo}-{ r })\}}\)

Energy required in moving from \(\infty\) to \({r}_{ef}\) is

\(PE_e={ m }_{ e }c^{ 2 }\lim _{ r\rightarrow \infty  }{ \{ln{( \cfrac{{r}}{{r_{ef} }})}+C({ r }_{ ef}-{ r })\}}\)

So, the energy required in moving the electron from from \({r}_{eo}\) to \({r}_{ef}\) is

\(E_s =PE_e({r}_{ef})-PE_e({r}_{eo})\)

\(E_s={ m }_{ e }c^{ 2 }\lim _{ r\rightarrow \infty  }{ \{ln{( \cfrac{{r }}{{r}_{ef}})}-ln{( \cfrac{{r }}{{r}_{eo}})}+C({ r }_{ ef}-{ r })-C({ r }_{ eo}-{ r })\}}\)

\({E}_{s}={ m }_{ e }c^{ 2 } \{ln{( \cfrac{{r }_{ e o}}{{r}_{ef}})}+C({ r }_{ ef }-{ r }_{ e o})\}\)

which is the same expression as \({E}_{s}\) as before.

From previous calculation of atomic radius we find that, the centripetal force is of the form,

\(\cfrac{{m}_{e}c^2}{{r}_{eo}}=\cfrac{q^2}{4\pi\varepsilon_o {r}^2_{eo}}.(4-\cfrac{3}{\frac{8}{3}}).\cfrac{\sqrt{3}}{2\sqrt{2}}\cfrac{3}{2}\)

and

\(\cfrac{m_ec^2}{{r}_{eo}}= \cfrac{q^2}{4\pi\varepsilon_o{r}^2_{eo}}(3-\cfrac{\sqrt{3}}{3}) \)

In general,

\(\cfrac{m_ec^2}{{r}_{eo}}= \cfrac{q^2}{4\pi\varepsilon_o{r}^2_{eo}}.A\)

where \(A\) is a numerical constant dependent on the configuration of the electrons around the positive charge.  Using this expression to bring a charge from infinity to its final configuration position along the line joining it and the positive center.

\(PE=-A\int^{{r}_{eo}}_{r\rightarrow\infty}{ \cfrac{-q^2}{4\pi\varepsilon_o{r}^2}d r}\)

\(PE= -\cfrac{q^2A}{4\pi\varepsilon_o}\{ \cfrac{1}{r}\}|^{{r}_{eo}}_{r\rightarrow\infty}\)

\(PE= -\cfrac{q^2A}{4\pi\varepsilon_o} \cfrac{1}{{r}_{eo}}\)

The negative sign indicates that this potential is lower than that at \(\infty\) which is zero.  Numerically, the energy stored when the electron is pushed to a lower orbit, (photon and electron repel) is equal to this PE when the electron is ejected (ie the atom is ionized) after the photon has passed.

\(E_s ={ m }_{ e }c^{ 2 }\{ ln{(  \cfrac{{r }_{ e o}}{{r}_{ef}})}+C({ r }_{ ef}-{ r }_{ eo})\}=\cfrac{q^2A}{4\pi\varepsilon_o} \frac{1}{{r}_{eo}}\)

\(ln{ ( \cfrac{{r }_{ e o}} {{r}_{ef}}e^{ C({ r }_{ ef }-{ r }_{ eo }) } })=\cfrac { q^{ 2 }A }{ 4\pi \varepsilon _{ o }{ m }_{ e }c^{ 2 } } \cfrac { 1 }{ { r }_{ eo } } \)

\( \cfrac{{r }_{ e o}}{{r}_{ef}} e^{ C({ r }_{ ef }-{ r }_{ eo }) } =e^{\cfrac { q^{ 2 }A }{ 4\pi \varepsilon _{ o }{ m }_{ e }c^{ 2 } } \cfrac { 1 }{ { r }_{ eo } }}\)

\({ r }_{ ef }e^{ -C.{ r }_{ ef } }={ r }_{ eo }e^{ -C.{ r }_{ eo } }e^{ \cfrac { -q^{ 2 }A }{ 4\pi \varepsilon _{ o }{ m }_{ e }c^{ 2 } } \cfrac { 1 }{ { r }_{ eo } }  }\)

because of the \(e^{ -\cfrac { q^{ 2 }A }{ 4\pi \varepsilon _{ o }{ m }_{ e }c^{ 2 } } \cfrac { 1 }{ { r }_{ eo } }  }\lt 1\)    factor,  and \({x}{e^{-Cx}}\) is monotonous increasing for \(x \lt 1\) for all values of \(C\).    \({r}_{ef}\lt {r}_{eo}\) for \({r}\lt 1\).  Which is an acceptable result.

Given an element the constant \(A\) is determined from distribution of electrons around the positive center.  The factor \(C\)....