Monday, June 9, 2014

Funny, Very Funny...

Strangely, ionization energy can be further simplified.  Since,

\({ r }_{ ef }={ r }_{ eo }e^{ \cfrac { -q^{ 2 }A }{ 4\pi \varepsilon _{ o }{ m }_{ e }c^{ 2 } } \cfrac { 1 }{ { r }_{ eo } }  }\)

and

\({E}_{s}={ m }_{ e }c^{ 2 } \{ln{( \cfrac{{r}_{eo}}{{r }_{ e f}})}\}\)

We have,

\({ E }_{ s }={ m }_{ e }c^{ 2 }\{ ln{ (e^{ \cfrac { q^{ 2 }A }{ 4\pi \varepsilon _{ o }{ m }_{ e }c^{ 2 } } \cfrac { 1 }{ { r }_{ eo } }  }) }\} \)

\( { E }_{ s }={ m }_{ e }c^{ 2 }\{ \cfrac { q^{ 2 }A }{ 4\pi \varepsilon _{ o }{ m }_{ e }c^{ 2 } } \cfrac { 1 }{ { r }_{ eo } } \} \)

\( { E }_{ s }=\cfrac { q^{ 2 }A }{ 4\pi \varepsilon _{ o } } \cfrac { 1 }{ { r }_{ eo } } \)

which is very funny indeed.