Sunday, April 26, 2015

And We Have A Smooth Take Off

From the post "Hollow Earth",

\(F=-\cfrac { GM }{ 4Rr^{ 2 } } \int _{ s=R-r }^{ s=R+r }{ \left( 1+\cfrac { r^{ 2 }-R^{ 2 } }{ s^{ 2 } }  \right)  } ds.m\)

\( g(s)=\cfrac { F }{ m } =-\cfrac { GM }{ 4Rr^{ 2 } } \int { \left( 1+\cfrac { r^{ 2 }-R^{ 2 } }{ s^{ 2 } }  \right)  } ds\)

On the outer surface of hollow earth,

\( s=r-R\),  \(s\gt0\)

\( \cfrac { d\, g(s) }{ d\, s } =-\cfrac { GM }{ 4Rr^{ 2 } } \left( 1+\cfrac { r^{ 2 }-R^{ 2 } }{ s^{ 2 } }  \right) +\cfrac { GM }{ 2Rr^{ 3 } } \int { \left( 1+\cfrac { r^{ 2 }-R^{ 2 } }{ s^{ 2 } }  \right)  } ds\)

\( =-\cfrac { GM }{ 4Rr^{ 2 } } \left\{ 1+\cfrac { r^{ 2 }-R^{ 2 } }{ s^{ 2 } } -\cfrac { 2 }{ r } \int { \left( 1+\cfrac { r^{ 2 }-R^{ 2 } }{ s^{ 2 } }  \right)  } ds \right\} \)

\(=-\cfrac { GM }{ 4R(s+R)^{ 2 } } \left\{ 2+\cfrac { 2R }{ s } -\cfrac { 2 }{ s+R } \int { \left( 2+\cfrac { 2R }{ s }  \right)  } ds \right\} \)

\(=-\cfrac { GM }{ 2R(s+R)^{ 2 } } \left\{ 1+\cfrac { R }{ s } -\cfrac { 2 }{ s+R } \int { \left( 1+\cfrac { R }{ s }  \right)  } ds \right\} \)

The gradient of gravity \(g^{'}(s)\) has a discontinuity at \(s=0\) due to the \(\cfrac{R}{s}\) term.  This high value in gradient results in a sharp increase in gravity \(g\rightarrow 2g\) at \(s=0^{+}\), on the outer surface of hollow earth.

In reality, gravity doubles only after some distance from sea level. The difference between \(s=0\) and \(s=0^{+}\) is significant.  And the next rocket launch should be less shaky.